Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt x-3=a; x+1=b
Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
=>(x-3)(x+1)(2x-2)=0
hay \(x\in\left\{3;-1;1\right\}\)
b: \(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-15x^2-9x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+6x\left(2x^2+1\right)-4x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(2x^2+6x+1\right)-4x\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow x^2+3x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x^2+3x+\dfrac{9}{4}=\dfrac{7}{4}\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{7}{4}\)
hay \(x\in\left\{\dfrac{\sqrt{7}-3}{2};\dfrac{-\sqrt{7}-3}{2}\right\}\)
Nhận thấy \(x=0\) không phải nghiệm, chia cả tử và mẫu của vế trái cho x ta được:
\(\frac{9}{2x+\frac{3}{x}+1}-\frac{1}{2x+\frac{3}{x}-1}=8\)
Đặt \(2x+\frac{3}{x}=a\) pt trở thành:
\(\frac{9}{a+1}-\frac{1}{a-1}=8\)
\(\Leftrightarrow9\left(a-1\right)-\left(a+1\right)=8\left(a^2-1\right)\)
\(\Leftrightarrow8a^2-8a+2=0\Leftrightarrow2\left(2a-1\right)^2=0\Rightarrow a=\frac{1}{2}\)
\(\Rightarrow2x+\frac{3}{x}=\frac{1}{2}\Leftrightarrow2x^2-\frac{1}{2}x+3=0\) \(\Rightarrow\) pt vô nghiệm
\(\left(x-1\right)^2-\left(x+1\right)^2=2\left(x+3\right)\)
\(\Leftrightarrow\left(x-1+x+1\right)\left(x-1-x-1\right)=2\left(x+3\right)\)
\(\Leftrightarrow2x\left(-2\right)=2\left(x+3\right)\)
\(\Leftrightarrow-4x=2x+6\)
\(\Leftrightarrow-6x=6\)
\(\Leftrightarrow x=-1\)
2) \(\left(2x-1\right)^2-\left(2x+1\right)^2=4\left(x-3\right)\)
\(\Leftrightarrow\left(2x-1+2x+1\right)\left(2x-1-2x-1\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow4x\left(-2\right)-4x+12=0\)
\(\Leftrightarrow-12x=-12\)
\(\Leftrightarrow x=1\)
3)\(\left(2x+3\right)^2-\left(2x+3\right)\left(2x-4\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x+3-2x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow7\left(2x+3\right)+x^2-4x+4=0\)
\(\Leftrightarrow x^2+10x+25=0\)
\(\Leftrightarrow\left(x+5\right)^2=0\)
\(\Leftrightarrow x=-5\)
4) \(8x^3-\left(x+1\right)^3=3x-3\)
\(\Leftrightarrow8x^3-\left(x^3+3x+3x^2+1\right)-3x+3=0\)
\(\Leftrightarrow7x^3-3x^2-6x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x^2+4x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2+3\sqrt{2}}{7}\\x=\frac{-2-3\sqrt{2}}{7}\end{matrix}\right.\)
5)\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow\left(3x\right)^3-2^3-\left(\left(3x\right)^3-1^3\right)=x-4\)
\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)=x-4\)
\(\Leftrightarrow-7=x-4\)
\(\Leftrightarrow x=-3\)
a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)
⇔ 5x + 3 = 2x + 3
⇔ 3x = 0
⇔ x = 0
Vậy phương trình có nghiệm là x = 0
Mình làm lại rồi nhé!
a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)
⇔ 5x + 3 = 2x + 3
⇔ 3x = 0
⇔ x = 0
Vậy phương trình có nghiệm là x = 3.
a.
\(\Leftrightarrow\left(3x-1\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow3x-1=-\dfrac{1}{2}\)
\(\Leftrightarrow3x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{6}\)
b.
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)-x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x-1-x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\\end{matrix}\right.\)
c.
\(\Leftrightarrow3x\left(5x-2\right)-2\left(5x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)