Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)
\(\Leftrightarrow9x-7=7x+5\)
\(\Leftrightarrow9x-7x=5+7\)
\(\Leftrightarrow2x=12\)
\(\Leftrightarrow x=6\)
\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
\(\Leftrightarrow x=9\)
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\) (1)
Đặt \(a=x+1;b=3x^2+x\) thì
\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)
\(\Leftrightarrow4a^2-7ab-2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)
Đến đây thì dễ rồi
a/ \(\Rightarrow x^2+9x=7\left(x+3\right)^2\)
\(\Rightarrow x^2+9x=7x^2+42x+63\).
\(\Rightarrow6x^2+33x+63=0\)
Có denta = 332 - 4.6.63 = -423 < 0
=> pt vô nghiệm
Vậy k có giá trị nào của x thỏa mãn biểu thức => \(x\in\phi\)
b) ĐK : ........
PT đã cho tương đương với :
\(\frac{3}{x-4+\frac{1}{x}}+\frac{2}{x+1+\frac{1}{x}}=\frac{8}{3}\)
Đặt x + 1/x + 1 = a
pt <=> \(\frac{3}{a-5}+\frac{2}{a}=\frac{8}{3}\)
giải pt với ẩn a
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
PP chung ở cả 3 câu,nói ngắn gọn nhé:
Chứng mình x khác 0,hay nói cách khác x=0 không là nghiệm của phương trình.
Chia cả tử và mẫu cho x ,rồi giải bình thường bằng cách đặt ẩn phụ.
Vd ở câu a>>>4/(4x-8+7/x)+3/(4x-10+7/x)=1.Sau đó đặt 4x+7/x=a>>>4/(a-8)+3/(a-10)=1>>>giải bình thường,các câu sau tương tự
a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\) (*)
Đặt \(2x^2+3x=a\left(a\ge-9\right)\)
=> \(5\sqrt{a+9}=a+3\)
<=> \(25\left(a+9\right)=a^2+6a+9\)
<=> \(25a+225=a^2+6a+9\)
<=> \(0=a^2+6a+9-25a-225=a^2-19a-216\)
<=> 0= \(a^2-27a+8a-216\)
<=> \(\left(a-27\right)\left(a+8\right)=0\)
=> \(\left[{}\begin{matrix}a=27\\a=-8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}2x^2+3x=27\\2x^2+3x=-8\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x^2+3x-27=0\\2x^2+3x+8=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}\left(x-3\right)\left(2x+9\right)=0\\2\left(x^2+2.\frac{3}{4}+\frac{9}{16}\right)+\frac{55}{8}=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\frac{9}{2}\left(tm\right)\\2\left(x+\frac{3}{4}\right)^2=-\frac{55}{8}\left(ktm\right)\end{matrix}\right.\)
Vậy pt (*) có tập nghiệm \(S=\left\{3,-\frac{9}{2}\right\}\)
b, \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\left(đk:x\le\sqrt[3]{\frac{81}{7}}\right)\)(*)
<=> \(\sqrt{81-7x^3}=9-\frac{x^3}{2}\)
<=>\(81-7x^3=\left(9-\frac{x^3}{2}\right)^2=81-9x^3+\frac{x^6}{4}\)
<=> \(-7x^3+9x^3-\frac{x^6}{4}=0\) <=> \(2x^3-\frac{x^6}{4}=0\)<=> \(8x^3-x^6=0\)
<=> \(x^3\left(8-x^2\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\8=x^2\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=0\left(tm\right)\\x=\pm2\sqrt{2}\left(ktm\right)\end{matrix}\right.\)
Vậy pt (*) có nghiệm x=0
d,\(\sqrt{9x-2x^2}-9x+2x^2+6=0\) (*) (đk: \(0\le x\le\frac{1}{2}\))
<=> \(\sqrt{9x-2x^2}-\left(9x-2x^2\right)+6=0\)
Đặt \(\sqrt{9x-2x^2}=a\left(a\ge0\right)\)
Có \(a-a^2+6=0\)
<=> \(a^2-a-6=0\) <=> \(a^2-3x+2x-6=0\)
<=> \(\left(a-3\right)\left(a+2\right)=0\)
=> \(a-3=0\) (vì a+2>0 vs mọi \(a\ge0\))
<=> a=3 <=>\(\sqrt{9x-2x^2}=3\) <=> \(9x-2x^2=9\)
<=> 0=\(2x^2-9x+9\) <=> \(2x^2-6x-3x+9=0\) <=>\(\left(2x-3\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}2x=3\\x=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)(t/m)
Vậy pt (*) có tập nghiệm \(S=\left\{\frac{3}{2},3\right\}\)