Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = -2 vào phương trình, ta có:
\(4.\left(-2\right)^2-25+q^2+4q.\left(-2\right)=0\)
\(\Leftrightarrow q^2-8q-9=0\Leftrightarrow\left(q-9\right)\left(q+1\right)=0\Leftrightarrow\orbr{\begin{cases}q=-9\\q=1\end{cases}}\)
Gọi K là trung điểm của AC
Ta có \(EF\le KF+KE\)
Mà KF là đg trung bình của tam giác ABC nên: \(KF=\frac{1}{2}AB\)
Tương tự: \(EK=\frac{1}{2}CD\)
Suy ra: \(EF\le\frac{AB+CD}{2}\)
Dấu bằng xảy ra khi E,F,K thằng hàng
Suy ra: AB//CD
x2 + 13x -198 = 0
(=) x2 - 9x + 22x -198 = 0
(=) x ( x - 9) + 22 ( x - 9) = 0
(=) ( x - 9)(x + 22) = 0
(=) x - 9 = 0 (=) x = 9
x + 22 = 0 x = - 22
\(2x^2+4x+3y^2=19\)
\(\Leftrightarrow2\left(x^2+2x+1\right)+3y^2=21\)
\(\Leftrightarrow2\left(x+1\right)^2+3y^2=21\)
Mà \(2\left(x+1\right)^2;3y^2\ge0\)
\(\Rightarrow0\le3y^2\le21\)
\(\Rightarrow0\le y^2\le7\)Mà \(y\in Z\Rightarrow y^2\in Z\)
\(\Rightarrow y^2\in\left\{0,1,4\right\}\Rightarrow y\in\left\{0,\pm1,\pm2\right\}\)
Ta có các trường hợp
x=2,-4
Vậy \(\left(x,y\right)=\left(2;1\right),\left(2;-1\right),\left(-4;1\right),\left(-4;-1\right)\)
pt <=> (2x^2+4x+2)+3y^2=21
<=> 2.(x+1)^2+3y^2 = 21
=> 3y^2 < = 21
Mà 3y^2 >= 0 => 0 < = 3y^2 < = 21
=> 3y^2 thuộc {0;3;6;9;12;15;18;21}
=> y^2 thuộc {0;1;2;3;4;5;6;7}
Mà 21 lẻ , 2.(x+1)^2 chẵn => 3y^2 lẻ => y^2 lẻ
=> y^2 thuộc {1;3;5;7} => y^2 = 1 ( vì y^2 là số chính phương )
=> x^2=9 ; y^2=1
=> (x;y) thuộc {(-1;-1);(-1;1);(1;1);(1;-1)}
Tk mk nha