K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

= $\frac{3+x}{3x}=\sqrt{\frac{1}{9}+\frac{1}{x}\sqrt{\frac{4}{9}+\frac{2}{x^2}}}$3+x3x =√19 ‍+1x √49 +2x2 

19 tháng 9 2018

ĐKXĐ: \(-3\le x\le3;x\ne0\)

Đặt \(\sqrt{9-x^2}=a\left(a\ge0;a\ne3\right)\Rightarrow x^2=9-a^2\),khi đó pt đã cho trở thành:

\(\frac{9-a^2}{3+a}+\frac{1}{4\left(3-a\right)}=1\)

\(\Rightarrow3-a+\frac{1}{4\left(3-a\right)}=1\)

\(\Rightarrow\frac{4\cdot\left(3-a\right)^2+1}{4\left(3-a\right)}=1\Rightarrow4a^2-24a+37=12-4a\)

\(\Rightarrow4a^2-20a+25=0\Rightarrow\left(2a-5\right)^2=0\Rightarrow2a-5=0\)

\(\Rightarrow a=\frac{5}{2}\)(tm điều kiện),theo cách đặt ta có

\(\sqrt{9-x^2}=\frac{5}{2}\Rightarrow9-x^2=\frac{25}{4}\Rightarrow x^2=\frac{11}{4}\Rightarrow x=\frac{\sqrt{11}}{2}\)(TMĐKXĐ)

Vậy pt đã cho có nghiệm duy nhất là \(x=\frac{\sqrt{11}}{2}\)

24 tháng 7 2019

B4

a) \(\frac{9}{\sqrt{3}}=\frac{9\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{9\sqrt{3}}{3}=3\sqrt{3}\)

b)\(\frac{3}{\sqrt{5}-\sqrt{2}}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}=\sqrt{5}+\sqrt{2}\)

c)\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{\left(\sqrt{2}+1\right)^2}{1}=\left(\sqrt{2}+1\right)^2\)

d)\(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)

24 tháng 7 2019

B3

a)\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\) \(đk:x\ge1\)

\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\sqrt{x-1}\cdot\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)

\(\sqrt{x-1}\cdot\left(-1\right)=-17\)

\(\sqrt{x-1}=17\)

\(\left[{}\begin{matrix}x-1=289\left(tm\right)\\x-1=-289\left(ktm\right)\end{matrix}\right.\)

\(x=290\left(tm\right)\)

7 tháng 8 2017

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

ĐK: \(x\ge0\)

\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)

7 tháng 8 2017

ai giải hộ mk ý a vs ý c