K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

Đặt \(\left\{{}\begin{matrix}\sqrt{x-2}=a\left(a>0\right)\\\sqrt{y-1}=b\left(b>0\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{36}{a}+\dfrac{4}{b}=28-4a-b\)

\(\Leftrightarrow\left(\dfrac{36}{a}+4a\right)+\left(\dfrac{4}{b}+b\right)=28\)

\(VT\ge2\sqrt{\dfrac{36}{a}\times4a}+2\sqrt{\dfrac{4}{b}\times b}=28\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{36}{a}=4a\\\dfrac{4}{b}=b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\) \(\left(a,b>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2}=3\\\sqrt{y-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\) (n)

Vậy . . . >3<

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:
a/ ĐKXĐ: $x\geq 0; y\geq 1$

PT $\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-4\sqrt{y-1}+4]=0$

$\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-2)^2=0$

Vì $(\sqrt{x}-1)^2\geq 0; (\sqrt{y-1}-2)^2\geq 0$ với mọi $x,y$ thuộc đkxđ

Do đó để tổng của chúng bằng $0$ thì:

$\sqrt{x}-1=\sqrt{y-1}-2=0$

$\Leftrightarrow x=1; y=5$

b. ĐKXĐ: $x\geq 0; y\geq 1; z\geq 2$

PT $\Leftrightarrow 2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z$

$\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-2\sqrt{y-1}+1]+[(z-2)-2\sqrt{z-2}+1]=0$

$\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-1)^2+(\sqrt{z-2}-1)^2=0$

$\Rightarrow \sqrt{x}-1=\sqrt{y-1}-1=\sqrt{z-2}-1=0$

$\Leftrightarrow x=1; y=2; z=3$

3 tháng 7 2021

\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)

Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi x=0 (tm)

Vậy \(A_{max}=\dfrac{1}{2}\)

Bài 2:

Đk: \(x\ge3;y\ge5;z\ge4\)

Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)

Áp dụng AM-GM có:

\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)

\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)

\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)

Cộng vế với vế \(\Rightarrow VT\ge20\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)

Vậy...

3 tháng 7 2021

I miss you Được em, hoặc trực tiếp nhóm thành HĐT, một vế là tổng các bình phương, vế còn lại bằng 0

NV
8 tháng 2 2020

ĐKXĐ:...

\(\Leftrightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

Ta có:

\(VT\ge2\sqrt{\frac{36.4\sqrt{x-2}}{\sqrt{x-2}}}+2\sqrt{\frac{4\sqrt{y-1}}{\sqrt{y-1}}}=28\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{9}{\sqrt{x-2}}=\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\)

3 tháng 1 2017

ĐKXĐ : \(\hept{\begin{cases}x>2\\y>1\end{cases}}\)

PT đã cho tương đương với \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}-24\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y+1}-4\right)=0\)

\(\Leftrightarrow\frac{\left(2\sqrt{x-2}-6\right)^2}{\sqrt{x-2}}+\frac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}-6=0\\\sqrt{y-1}-2=0\end{cases}}\)

Tới đây bạn tự giải được rồi :)

2 tháng 9 2017

Câu hỏi của Thu Trần Thị - Toán lớp 9 - Học toán với OnlineMath

tham khảo nhé 

bn cần đoa

22 tháng 12 2015

Có \(4\left(\frac{9}{\sqrt{x-2}}+\sqrt{x-2}\right)\ge4.2\sqrt{\frac{9}{\sqrt{x-2}}\sqrt{x-2}}=24\)(Cô si)
\(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\frac{4}{\sqrt{y-1}}\sqrt{y-1}}=4\)
\(\Rightarrow\frac{4}{\sqrt{y-1}}+\sqrt{y-1}+4\left(\frac{9}{\sqrt{x-2}}+\sqrt{x-2}\right)\ge28\)
Dấu "=" xảy ra <=>\(\int^{9=x-2}_{4=y-1}\Leftrightarrow\int^{x=11}_{y=5}\)
 

13 tháng 2 2022

\(\left(x\ne-y;x>\dfrac{y}{2}\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2x-y}}-\dfrac{21}{x+y}=\dfrac{1}{2}\\\dfrac{3}{\sqrt{2x-y}}+\dfrac{7-\left(x+y\right)}{x+y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2x-y}}-\dfrac{21}{x+y}=\dfrac{1}{2}\\\dfrac{3}{\sqrt{2x-y}}+\dfrac{7}{x+y}=2\end{matrix}\right.\)

\(đặt:\dfrac{1}{\sqrt{2x-y}}=a>0;\dfrac{1}{x+y}=b\)

\(\Rightarrow\left\{{}\begin{matrix}4a-21b=\dfrac{1}{2}\\3a+7b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\left(tm\right)\\b=\dfrac{1}{14}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{2x-y}}=\dfrac{1}{2}\\\dfrac{1}{x+y}=\dfrac{1}{14}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\x+y=14\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)(thỏa)

2 tháng 9 2021

a,ĐK: x≥4

Ta có: \(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)

      \(\Leftrightarrow2\sqrt{x-4}-\sqrt{x-4}=4-\sqrt{x-4}\)

      \(\Leftrightarrow2\sqrt{x-4}=4\)

      \(\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x-4=4\Leftrightarrow x=8\left(tm\right)\)

2 tháng 9 2021

b, ĐK: x≥2

Ta có: \(3\sqrt{x-2}-\sqrt{x^2-4}=0\)

      \(\Leftrightarrow3\sqrt{x-2}-\sqrt{\left(x-2\right)\left(x+2\right)}=0\)

      \(\Leftrightarrow\sqrt{x-2}\left(3-\sqrt{x+2}\right)=0\)

      \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\3-\sqrt{x+2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x+2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)