Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow cos2x=\dfrac{1}{\sqrt{2}}\)
=>2x=pi/4+k2pi hoặc 2x=-pi/4+k2pi
=>x=pi/8+kpi hoặc x=-pi/8+kpi
b: \(\Leftrightarrow sinx=sin\left(\dfrac{pi}{2}-3x\right)\)
=>x=pi/2-3x+k2pi hoặ x=pi/2+3x+k2pi
=>4x=pi/2+k2pi hoặc -2x=pi/2+k2pi
=>x=pi/8+kpi/2 hoặc x=-pi/4-kpi
d: \(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=-sin\left(3x+\dfrac{pi}{4}\right)\)
\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=sin\left(-3x-\dfrac{pi}{4}\right)\)
\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=cos\left(3x+\dfrac{3}{4}pi\right)\)
=>3x+3/4pi=x+pi/3+k2pi hoặc 3x+3/4pi=-x-pi/3+k2pi
=>2x=-5/12pi+k2pi hoặc 4x=-13/12pi+k2pi
=>x=-5/24pi+kpi hoặc x=-13/48pi+kpi/2
e: \(\Leftrightarrow sinx-\sqrt{3}\cdot cosx=0\)
\(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=0\)
=>x-pi/3=kpi
=>x=kpi+pi/3
d/
ĐKXĐ: ...
Biến đôi biểu thức vế trái trước:
\(1+tanx.tan\frac{x}{2}=1+\frac{sinx.sin\frac{x}{2}}{cosx.cos\frac{x}{2}}=\frac{sinx.sin\frac{x}{2}+cosx.cos\frac{x}{2}}{cosx.cos\frac{x}{2}}=\frac{cos\left(x-\frac{x}{2}\right)}{cosx.cos\frac{x}{2}}=\frac{1}{cosx}\)
Do đó pt tương đương:
\(\sqrt{3}\left(1+tan^2x\right)-tanx-2\sqrt{3}=sinx.\frac{1}{cosx}\)
\(\Leftrightarrow\sqrt{3}tan^2x-2tanx-\sqrt{3}=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-\frac{1}{\sqrt{3}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Sử dụng kết quả biến đổi trên làm câu c sẽ lẹ hơn cách cũ
c/
ĐKXĐ: ...
\(\Leftrightarrow2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=2cos^2x-4\)
\(\Leftrightarrow2cos^2x+2cos^2x.tanx.tan\frac{x}{2}=2cos^2x-4\)
\(\Leftrightarrow cos^2x.tanx.tan\frac{x}{2}=-2\)
\(\Leftrightarrow sinx.cosx.tan\frac{x}{2}=-2\)
\(\Leftrightarrow sinx.cosx.\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=-2\)
\(\Leftrightarrow sinx.cosx.\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}.cos\frac{x}{2}}=-1\)
\(\Leftrightarrow cosx\left(\frac{1-cosx}{2}\right)=-1\)
\(\Leftrightarrow cos^2x-cosx-2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pi+k2\pi\)
a, \(cos^2x-cosx=0\)
\(\Leftrightarrow cosx\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=0\end{matrix}\right.\)
b, \(2sin2x+\sqrt{2}sin4x=0\)
\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)
\(\Leftrightarrow sin2x\left(1+\sqrt{2}cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}cos2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\cos2x=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\2x=\dfrac{3\pi}{4}+k2\pi\\2x=\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{3\pi}{8}+k\pi\\x=\dfrac{\pi}{8}+k\pi\end{matrix}\right.\)
a, \(cos^2x-cosx=0\)
\(\Leftrightarrow cosx\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\) (k ∈ Z)
Vậy...
b, \(2sin2x+\sqrt{2}sin4x=0\)
\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)
\(\Leftrightarrow2sin2x\left(1+\sqrt{2}cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=\dfrac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\pm\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\pm\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\)
Vậy...
c, \(8cos^2x+2sinx-7=0\)
\(\Leftrightarrow8\left(1-sin^2x\right)+2sinx-7=0\)
\(\Leftrightarrow8sin^2x-2sinx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)
Vậy...
d, \(4cos^4x+cos^2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=\dfrac{3}{4}\\cos^2x=-1\left(loai\right)\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{cos2x+1}{2}=\dfrac{3}{4}\)
\(\Leftrightarrow cos2x=\dfrac{1}{2}\)
\(\Leftrightarrow2x=\pm\dfrac{\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+k\pi\)
Vậy...
e, \(\sqrt{3}tanx-6cotx+\left(2\sqrt{3}-3\right)=0\) (ĐK: \(x\ne\dfrac{k\pi}{2}\))
\(\Leftrightarrow\sqrt{3}tanx-\dfrac{6}{tanx}+\left(2\sqrt{3}-3\right)=0\)
\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\left(tm\right)\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)
Vậy...
1/ \(sinx=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
b/ \(cos=-\frac{\sqrt{2}}{2}=cos\left(\frac{3\pi}{4}\right)\)
\(\Rightarrow x=\pm\frac{3\pi}{4}+k2\pi\)
c/ \(tanx=\sqrt{3}=tan\left(\frac{\pi}{3}\right)\)
\(\Rightarrow x=\frac{\pi}{3}+k\pi\)
d/ \(cotx=0\Rightarrow x=\frac{\pi}{2}+k\pi\)
2/
a/ \(sin^2x+sinx-2=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(sinx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-2\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{2}+k2\pi\)
b/ \(cot^2x-2cotx-3=0\)
\(\Leftrightarrow\left(cotx+1\right)\left(cotx-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cotx=-1\\cotx=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arccot3+k\pi\end{matrix}\right.\)
3/ \(\Leftrightarrow1-cos2x+1-cos4x+1-cos6x=3\)
\(\Leftrightarrow cos2x+cos6x+cos4x=0\)
\(\Leftrightarrow2coss4x.cos2x+cos4x=0\)
\(\Leftrightarrow cos4x\left(2cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\2x=\frac{2\pi}{3}+k2\pi\\2x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
c/
\(a+b+c=1+\sqrt{3}-1-\sqrt{3}=0\)
\(\Rightarrow\) Pt có 2 nghiệm: \(\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
d/ ĐKXĐ: ...
\(\Leftrightarrow cot^22x+3.cot2x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k\pi\\2x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+\frac{k\pi}{2}\\x=\frac{1}{2}arccot\left(-2\right)+\frac{k\pi}{2}\end{matrix}\right.\)
a/
\(\Leftrightarrow2cos^2x-1+cosx+1=0\)
\(\Leftrightarrow cosx\left(2cosx+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
b/ ĐKXĐ: ...
\(\Leftrightarrow tanx+\frac{1}{tanx}=2\)
\(\Leftrightarrow tan^2x+1=2tanx\)
\(\Leftrightarrow tan^2x-2tanx+1=0\)
\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)
Năm nay bạn lên 11 à, nếu đúng chắc bạn đang tự học phải không?
a) Bạn dùng máy tính (mode 5 3 rồi bấm 3= 1= =) máy hiện ra 2 nghiệm
x=-1/3 và x=0 (nghiệm x chính là cosx đó)
x=-1/3 (hơi lẻ đó)<=>cosx=-1/3 <=> x= (+) (-) arc cos(-1/3)+k2\(\Pi\) (k\(\in\)Z) (arc cos(-1/3) = SHIFT COS trong máy tính)
x=0<=> cosx=0<=> x=\(\dfrac{\Pi}{2}\)+l\(\Pi\) (l\(\in\)Z)
b) Bạn dùng công thức cos2x=2cos2x-1 là ra ngay thôi mà!
pt<=>cos2x+(2cos2x-1)2=0
<=>cos2x+4cos4x-4cos2x+1=0
<=>4cos4x-3cos2x+1=0 (pt vô nghiệm, thốn vl) chắc đề sai hay gì đó bạn ơi, thường người ta ít cho vô nghiệm lắm!
c) Đặt t=sinx+cosx =>t2=sin2x+cos2x+2sinxcosx=1+2sinxcosx<=>2sinxcosx=t2-1
PT trở thành:
t+t2-1=0<=>\(\left[{}\begin{matrix}t1=\dfrac{-1+\sqrt{5}}{2}\\t2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}six+cosx=t1\\sinx+cosx=t2\end{matrix}\right.\)
Mà sinxx+ cosx=\(\sqrt{2}\) sin(x+\(\dfrac{\Pi}{4}\)) ct ày không biết bạn học chưa nhưng nó sử dụng rất nhiều đấy cố mà nhớ nhé!
1) sin(x+pi/4)=\(\dfrac{\sqrt{10}-\sqrt{2}}{4}\)=A<=>x=arc sinA-pi/4+k2pi (k thuộc Z) hoặc x=pi-arc sinA-pi/4+k2pi
2) sin(x+pi/4)=\(\dfrac{-\sqrt{10}-\sqrt{2}}{4}\)=B<=>x=......... như trên vậy đó hihi!
d)ĐIều kiện: cosx khác 0 <=> x\(\ne\)pi/2+kpi và cos2x khác 0<=> x \(\ne\)\(\dfrac{\Pi}{4}\)+kpi/2
pt<=>\(\dfrac{sinx}{cosx}\)+\(\dfrac{sin2x}{cos2x}\)=0
<=>sinx.cos2x+sin2x.cosx=0
<=>sinx.cos2x+2sinx.cos2x=0 (sin2x=2sinx.cosx)
<=>sinx(cos2x+2cos2x)=0
<=>sinx(2cos2x-1+2cos2x)=0
<=>sinx(4cos2x-1)=0
1) sinx=0<=>x=kpi (nhận)
2)4cos2x-1=0<=>cosx=1/2<=>x=+ - pi/3+k2pi Hoặc cosx=-1/2
<=>x= + - 2pi/3+kpi(nhận)
Chúc bạn học tốt !
À quên câu c) thiếu điều kiện của t rồi
\(-\sqrt{2}\le t\le\sqrt{2}\)
ĐKXĐ: ...
a/ \(\frac{sin2x}{cos2x}+\frac{cosx}{sinx}=8cos^2x\)
\(\Leftrightarrow sin2x.sinx+cos2x.cosx=8cos^2x.sinx.cos2x\)
\(\Leftrightarrow cosx=4sin2x.cos2x.cosx\)
\(\Leftrightarrow cosx=2sin4x.cosx\)
\(\Leftrightarrow cosx\left(2sin4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin4x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
b/ \(\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{1}{sinx.cosx}\)
\(\Leftrightarrow cos^2x-sin^2x+4sin2x.sinx.cosx=1\)
\(\Leftrightarrow cos2x+2sin^22x=1\)
\(\Leftrightarrow cos2x+2\left(1-cos^22x\right)=1\)
\(\Leftrightarrow-2cos^22x+cos2x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
1c/
\(5sinx-2=3\left(1-sinx\right)\frac{sin^2x}{1-sin^2x}\)
\(\Leftrightarrow5sinx-2=\frac{3sin^2x}{1+sinx}\)
\(\Leftrightarrow\left(5sinx-2\right)\left(1+sinx\right)=3sin^2x\)
\(\Leftrightarrow5sin^2x+3sinx-2=3sin^2x\)
\(\Leftrightarrow2sin^2x+3sinx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=...\)
Bài 2:
a/ \(\Leftrightarrow\frac{\left(m+1\right)\left(1-cos2x\right)}{2}-sin2x+cos2x=0\)
\(\Leftrightarrow2sin2x+\left(m-1\right)cos2x=m+1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(4+\left(m-1\right)^2\ge\left(m+1\right)^2\)
\(\Leftrightarrow4m\le4\Rightarrow m\le1\)
c/
\(\Leftrightarrow2sinx.cosx-2\sqrt{3}cos^2x=0\)
\(\Leftrightarrow2cosx\left(sinx-\sqrt{3}cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx-\sqrt{3}cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\sinx=\sqrt{3}cosx\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{sinx}{cosx}=\sqrt{3}\Leftrightarrow tanx=\sqrt{3}\)
\(\Rightarrow x=\frac{\pi}{3}+k\pi\)
d/
\(\Leftrightarrow tan\left(3x-50^0\right)=-cot\left(x-30^0\right)\)
\(\Leftrightarrow tan\left(3x-50^0\right)=tan\left(x+60^0\right)\)
\(\Rightarrow3x-50^0=x+60^0+k180^0\)
\(\Rightarrow x=55^0+k90^0\)
a/
\(\Leftrightarrow sinx=2cosx\)
Nhận thấy \(cosx=0\) không phải nghiệm, pt tương đương:
\(\frac{sinx}{cosx}=2\Leftrightarrow tanx=2\)
\(\Leftrightarrow tanx=tana\) (với \(a\in\left(0;\frac{\pi}{2}\right)\) sao cho \(tana=2\))
\(\Rightarrow x=a+k\pi\)
b/
\(tan2x=cotx=tan\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow2x=\frac{\pi}{2}-x+k\pi\)
\(\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{3}\)
1.
\(\Leftrightarrow1-2sin^2x+sinx+m=0\)
\(\Leftrightarrow2sin^2x-sinx-1=m\)
Đặt \(sinx=t\Rightarrow t\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
Xét hàm \(f\left(t\right)=2t^2-t-1\) trên \(\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(f\left(-\dfrac{1}{2}\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\) ; \(f\left(\dfrac{\sqrt{2}}{2}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow-\dfrac{9}{8}\le f\left(t\right)\le0\Rightarrow-\dfrac{9}{8}\le m\le0\)
Có 2 giá trị nguyên của m (nếu đáp án là 3 thì đáp án sai)
2.
ĐKXĐ: \(sin2x\ne1\Rightarrow x\ne\dfrac{\pi}{4}\) (chỉ quan tâm trong khoảng xét)
Pt tương đương:
\(\left(tan^2x+cot^2x+2\right)-\left(tanx+cotx\right)-4=0\)
\(\Leftrightarrow\left(tanx+cotx\right)^2+\left(tanx+cotx\right)-4=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx+cotx=\dfrac{1+\sqrt{17}}{2}\\tanx+cotx=\dfrac{1-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)
Nghiệm xấu quá, kiểm tra lại đề chỗ \(-tanx+...-cotx\) có thể 1 trong 2 cái đằng trước phải là dấu "+"
a) TH1: sinx = 1
--> x = pi/2 + k2pi (k nguyên)
TH2: sinx = -3 (loại)
b) 2cosx + cos2x = 0
<=> 2cosx + 2cos^2(x) - 1 = 0
TH1: cosx = (-1 + sqrt(3))/2
TH2: cosx = (-1 - sqrt(3))/2 (loại)