Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
a) \(0,25x^3+x^2+x=0\)
\(\Leftrightarrow x\left(0,25x^2+x+1\right)=0\)
\(\Leftrightarrow x\left[\left(\frac{1}{2}x\right)^2+2\cdot\frac{1}{2}x\cdot1+1^2\right]=0\)
\(\Leftrightarrow x\left(\frac{1}{2}x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{2}x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy....
b) \(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2-x}{2007}-1+2=\frac{1-x}{2008}+1+\frac{-x}{2009}+1\)
\(\Leftrightarrow\frac{2-x+2007}{2007}=\frac{1-x+2008}{2008}+\frac{-x+2009}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}-\frac{2009-x}{2008}-\frac{2009-x}{2009}=0\)
\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
Vì \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)
\(\Rightarrow2009-x=0\)
\(\Leftrightarrow x=2009\)
Vậy....
a) \(\frac{4-3x}{5}-\frac{4-x}{10}=\frac{x+2}{2}\)
\(\frac{8-6x-4+x}{10}=\frac{5x+10}{10}\)
\(4-5x=5x+10\)
\(4-5x-5x-10=0\)
\(-6-10x=0\)
\(\Rightarrow x=\frac{-3}{5}\)
Vậy....
\(\frac{4-3x}{5}-\frac{4-x}{10}=\frac{x+2}{2}\)
\(\Leftrightarrow\)\(\frac{2.\left(4-3x\right)}{10}-\frac{4-x}{10}=\frac{5.\left(x+2\right)}{10}\)
\(\Rightarrow\) 2.( 4 - 3x ) - 4 + x = 5.( x + 2 )
\(\Leftrightarrow\)8 - 6x - 4+ x = 5x + `10
\(\Leftrightarrow\)-6x + x - 5x = -8 + 4 + 10
\(\Leftrightarrow\) -10x = 6
\(\Leftrightarrow\)\(x=\frac{-3}{5}\)
Vậy phương trình có nghiệm là: \(x=\frac{-3}{5}\)
b ) \(\frac{x+1}{2009}+\frac{x+2}{2008}=\frac{x+2007}{3}+\frac{x+2006}{4}\)
\(\Leftrightarrow\) \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1\)\(=\frac{x+2007}{3}+1+\frac{x+2006}{4}+1\)
\(\Leftrightarrow\)\(\frac{x+1}{2009}+\frac{2009}{2009}+\frac{x+2}{2008}+\frac{2008}{2008}\)\(=\frac{x+2007}{3}+\frac{3}{3}+\frac{x+2006}{4}+\frac{4}{4}\)
\(\Leftrightarrow\)\(\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{3}+\frac{x+2006}{4}\)
\(\Leftrightarrow\)\(\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{3}-\frac{x+2010}{4}=0\)
\(\Leftrightarrow\)\(\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(x+2010=0\) ( Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\ne0\))
\(\Leftrightarrow\) \(x=-2010\)
Vậy phương trình có nghiệm là: x = -2010
phương trình đã cho tương đương vs phg trình
2 -x/2007 +1 = ( 1-x/2008 +1) - ( x/2009 -1)
<=> 2009 -x/2007 = 2009 -x/2008 + 2009 -x/2009
<=> (2009 -x)( 1/2008 + 1/2009 - 1/2007) =0
<=> x =2009
a) ĐKXĐ: x≠0
Ta có: \(\frac{9}{x}+2=-6\)
⇔\(\frac{9}{x}+2+6=0\)
⇔\(\frac{9}{x}+8=0\)
⇔\(\frac{9}{x}+\frac{8x}{x}=0\)
⇔9+8x=0
⇔8x=-9
hay \(x=-\frac{9}{8}\)
Vậy: \(x=-\frac{9}{8}\)
b) ĐKXĐ: x≠0;x≠-1;x≠-3
Ta có: \(\frac{7}{x+1}+\frac{-18x}{x\left(x^2+4x+3\right)}=\frac{-4}{x+3}\)
⇔\(\frac{7}{x+1}+\frac{-18x}{x\left(x+1\right)\left(x+3\right)}-\frac{-4}{x+3}=0\)
⇔\(\frac{7x\left(x+3\right)}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}+\frac{-18x}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}-\frac{-4x\left(x+1\right)}{\left(x+3\right)\cdot x\cdot\left(x+1\right)}=0\)
⇔\(7x^2+21x-18x+4x\left(x+1\right)=0\)
\(\Leftrightarrow7x^2+21x-18x+4x^2+4x=0\)
⇔\(11x^2+7x=0\)
\(\Leftrightarrow x\left(11x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\11x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\11x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\frac{-7}{11}\end{matrix}\right.\)
Vậy: \(x=\frac{-7}{11}\)
c) ĐKXĐ: x≠1; x≠-3
Ta có: \(\frac{3x-1}{x-1}-1=\frac{2x+5}{x+3}+\frac{4}{x^2-2x+3}\)
⇔\(\frac{3x-1}{x-1}-1-\frac{2x+5}{x+3}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
⇔\(\frac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x+5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
⇔\(\left(3x-1\right)\left(x+3\right)-\left(x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)-4=0\)
\(\Leftrightarrow3x^2+9x-x-3-\left(x^2+3x-x-3\right)-\left(2x^2-2x+5x-5\right)-4=0\)
\(\Leftrightarrow3x^2+8x-3-\left(x^2+2x-3\right)-\left(2x^2+3x-5\right)-4=0\)
\(\Leftrightarrow3x^2+8x-3-x^2-2x+3-2x^2-3x+5-4=0\)
\(\Leftrightarrow3x+1=0\)
\(\Leftrightarrow3x=-1\)
hay \(x=\frac{-1}{3}\)
Vậy: \(x=\frac{-1}{3}\)
Ta có :
\(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)
\(\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+5}{2008}+1\right)+\left(\frac{x+6}{2007}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+2013}{2012}+\frac{x+2013}{2011}+\frac{x+2013}{2010}=\frac{x+2013}{2009}+\frac{x+2013}{2008}+\frac{x+2013}{2007}\)
\(\Leftrightarrow\)\(\left(x+2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)\)
\(\Leftrightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}=\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(1\right)\)
Mà \(\frac{1}{2012}< \frac{1}{2009}\)\(;\)\(\frac{1}{2011}< \frac{1}{2008}\)\(;\)\(\frac{1}{2010}< \frac{1}{2007}\)
\(\Rightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra không có giá trị nào của \(x\)thoả mãn đề bài
Vậy không có gía trị nào của \(x\)hay \(x\in\left\{\varnothing\right\}\)
a/ \(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2-x}{2007}+1=\frac{1-x}{2008}+1+1-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)
\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=00\)
\(\Leftrightarrow x=2009\)
Câu b thì cứ quy đồng đặt nhân tử bình thường đi