K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{2x}{x^2-x+1}-\dfrac{x}{x^2+x+1}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{2x\left(x^2+x+1\right)-x\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x^2+x+1\right)}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{2x^3+2x^2+2x-x^3+x^2-x}{\left(x^2-x+1\right)\left(x^2+x+1\right)}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{x^3+3x^2+x}{\left(x^2+1\right)^2-x^2}=\dfrac{5}{3}\)

\(\Leftrightarrow3x^3+9x^2+3x=5\left(x^4+2x^2+1-x^2\right)\)

\(\Leftrightarrow3x^3+9x^2+3x=5x^4+5x^2+5\)

\(\Leftrightarrow5x^4+5x^2+5-3x^3-9x^2-3x=0\)

\(\Leftrightarrow5x^4-3x^3-4x^2-3x+5=0\)

\(\Leftrightarrow5x^4-5x^3+2x^3-2x^2-2x^2+2x-5x+5=0\)

\(\Leftrightarrow5x^3\left(x-1\right)+2x^2\left(x-1\right)-2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x^3+2x^2-2x-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x^3-5x^2+7x^2-7x+5x-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5x^2\left(x-1\right)+7x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(5x^2+7x+5\right)=0\)

mà \(5x^2+7x+5>0\forall x\)

nên x-1=0

hay x=1

6 tháng 7 2021

vì sao mà 5x2+7x+5>0?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 tháng 5 2021

a,\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\left(đkxđ:x\ne2;4\right)\)

\(< =>\frac{-2}{\left(x-2\right)\left(x-4\right)}-\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}=\frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}\)

\(< =>-2-\left(x^2-5x+4\right)=x^2+x-5\)

\(< =>-x^2+5x-6-x^2-x+5=0\)

\(< =>-2x^2+4x-1=0\)

\(< =>2x^2-4x+1=0\)

đến đây thì pt bậc 2 dể rồi

10 tháng 5 2021

\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x+1}\left(đkxđ:x\ne\pm1\right)\)

\(< =>\frac{2}{x^2\left(x-1\right)-\left(x-1\right)}=\frac{3}{1-x^2}-\frac{1}{x+1}\)

\(< =>\frac{2}{\left(x^2-1\right)\left(x-1\right)}=-\frac{3}{x^2-1}-\frac{1}{x+1}\)

\(< =>\frac{2}{\left(x+1\right)\left(x-1\right)^2}=\frac{-3\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}\)

\(< =>2+3x-3+x^2-2x+1=0\)

\(< =>x^2+x=0< =>x\left(x+1\right)=0< =>\orbr{\begin{cases}x=-1\left(loai\right)\\x=0\left(tm\right)\end{cases}}\)

6 tháng 4 2017

1) tôi giải theo kt lớp 9 nhé nếu theo lp 8 thì phần tích theo đk trong gttđ
   lập bảng xét dấu  
    

x                                1
lx2-1l1-x2                                    0                           x2-1
lx-1l1-x                           0                      x-1
lx2-1l+lx-1l-x2-x+2                                         x2+x-2

với x <1  => x=1   x=-2
với x>1   >x=1      x=-2
vậy  pt có 2 ng phân bịt  x =1 và x=-2
các câu còn lại lm tương tự w nhé 
 chúc bn hc giỏi !!

6 tháng 4 2017

@trần tuấn phát giải giúp mik kiểu lớp 8 với! Mik k hỉu!

=4x^2-4x+1+x^3-27-4(x^2-16)

=4x^2-4x+1+x^3-27-4x^2+64

=x^3-4x+38

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Bài 1:

a. 

$(4x^2+4x+1)-x^2=0$

$\Leftrightarrow (2x+1)^2-x^2=0$

$\Leftrightarrow (2x+1-x)(2x+1+x)=0$

$\Leftrightarrow (x+1)(3x+1)=0$

$\Rightarrow x+1=0$ hoặc $3x+1=0$

$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$

b.

$x^2-2x+1=4$

$\Leftrightarrow (x-1)^2=2^2$

$\Leftrightarrow (x-1)^2-2^2=0$

$\Leftrightarrow (x-1-2)(x-1+2)=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x-3=0$ hoặc $x+1=0$

$\Leftrightarrow x=3$ hoặc $x=-1$

c.

$x^2-5x+6=0$

$\Leftrightarrow (x^2-2x)-(3x-6)=0$

$\Leftrightarrow x(x-2)-3(x-2)=0$

$\Leftrightarrow (x-2)(x-3)=0$

$\Leftrightarrow x-2=0$ hoặc $x-3=0$

$\Leftrightarrow x=2$ hoặc $x=3$

 

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

2c.

ĐKXĐ: $x\neq 0$

PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$

$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$

$\Leftrightarrow x=-4$ (tm)

2d.

ĐKXĐ: $x\neq 2$

PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$

$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$

$\Rightarrow 3x-5=3-x$

$\Leftrightarrow 4x=8$

$\Leftrightarrow x=2$ (không tm) 

Vậy pt vô nghiệm.

a: =>4x-3x=1-2

=>x=-1

b: =>3x=12

=>x=4

c: =>2(x^2-6)=x(x+3)

=>2x^2-12-x^2-3x=0

=>x^2-3x-12=0

=>\(x=\dfrac{3\pm\sqrt{57}}{2}\)

a: =>x-3=2 hoặc x-3=-2

=>x=5 hoặc x=1

b: =>x2=0

hay x=0

c: =>(3x-5-x+1)(3x-5+x-1)=0

=>(2x-4)(4x-6)=0

=>x=2 hoặc x=3/2

d: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x-1-x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-4\right)=0\)

hay \(x\in\left\{1;-1;4\right\}\)

14 tháng 2 2022

\(a,\left(x-3\right)^2=4\\\Leftrightarrow\left(x-3\right)^2-2^2=0\\ \Leftrightarrow \left(x-3-2\right).\left(x-3+2\right)=0\\ \Leftrightarrow\left(x-5\right).\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\\\Rightarrow S=\left\{1;5\right\}\\ b,x^2.\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\\ \Rightarrow S=\left\{0\right\}\\ c,\left(3x-5\right)^2-\left(x-1\right)^2=0\\ \Leftrightarrow\left(3x-5-x+1\right).\left(3x-5+x-1\right)=0\\ \Leftrightarrow\left(2x-4\right).\left(4x-6\right)=0\\ \Leftrightarrow2.\left(x-2\right).2.\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\\ \Rightarrow S=\left\{\dfrac{3}{2};2\right\}\)

\(d,\left(x^2-1\right).\left(2x-1\right)=\left(x^2-1\right).\left(x+3\right)\\ \Leftrightarrow\left(x^2-1\right).\left(2x-1-x-3\right)=0\\ \Leftrightarrow\left(x^2-1\right).\left(x-4\right)=0\\ \Leftrightarrow\left(x-1\right).\left(x+1\right).\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=4\end{matrix}\right.\\ \Rightarrow S=\left\{-1;1;4\right\}\)

1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)

hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)

2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)

hay \(x\in\left\{1;5\right\}\)

3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)

hay \(x\in\left\{-4;3;-3\right\}\)

5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)

\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)

\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)

hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)

14 tháng 2 2022

1.

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)

\(\Leftrightarrow x+3=5x-2\)

\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)

2.

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)

\(\Leftrightarrow x^2+x+1=x^2-2x+16\)

\(\Leftrightarrow3x=15\Leftrightarrow x=5\)

3.

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)

16 tháng 1 2021

\(a,\left(2x-3\right)^2=\left(x+1\right)^2\\ \Leftrightarrow\left(2x-3\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-3+x+1\right)\left(2x-3-x-1\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-4\right)\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\x=4\end{matrix}\right. \\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{2}{3};4\right\}\)

 

16 tháng 1 2021

\(b,x^2-6x+9=9\left(x-1\right)^2\\ \Leftrightarrow\left(x-3\right)^2=9\left(x-1\right)^2\\ \Leftrightarrow\left(x-3\right)^2-9\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-3\right)^2-3^2\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-3\right)^2-\left[3\left(x-1\right)\right]^2=0\\ \Leftrightarrow\left(x-3\right)^2-\left(3x-3\right)^2=0\\ \Leftrightarrow\left(x-3+3x-3\right)\left(x-3-3x+3\right)=0\\ \Leftrightarrow-2x\left(4x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-2x=0\\4x-6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\4x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{0;\dfrac{3}{2}\right\}\)