K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2023

\(x^5+x^4+x^3+x^2+x=0\)

\(\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)=0\)

\(x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\left(x+1\right)\left(x^4+x^2+1\right)=0\)

⇔ \(\left[{}\begin{matrix}x+1=0\\x^4+x^2+1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x\in\varnothing\end{matrix}\right.\)

20 tháng 1 2017

Theo bài ra , ta có : 

\(x^5=x^4+x^3+x^2+x+2\)

\(\Leftrightarrow x^5-1-\left(x^4+x^3+x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)=0\)(1)

Ta tiếp tục xét phương trình này 

\(x^4+x^3+x^2+x+1=0\)(2) 

Nhân cả hai vế của phương trình (2) cho x - 1 , ta được 

\(\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)

\(\Leftrightarrow x^5-1=0\Leftrightarrow x^5=1\)(3) 

Phương trình (3) có nghiệm bằng x = 1 , nhưng giá trị này không thỏa mãn ở phương trình (2) 

=) ptvn

Suy ra phương trình (1) có dạng 

\(x-2=0\)

\(\Leftrightarrow x=2\)

Tập nghiệm của phương trình là S={2}

Chúc bạn học tốt =))

22 tháng 1 2017

thank you ban

6 tháng 2 2016

Em mới học lớp 6 thôi . Đợi hai năm nữa em giải cho !

6 tháng 2 2016

ta co  |x+1| =x+1 khi x lon hon hoac bang -1 ; |x+1|= - (x+1) khi x nho hon -1                                                                                         th1 : x lon hon hoac bang 1 thi x^2+2x+2x+2-2=0 suy ra x=0 hoac x=-4                                                                                                  th2: x nho hon -1 thi x^2+2x-2x-2-2=0 suy ra x=2 hoac x=-2 

8 tháng 2 2022

vậy pt vô số nghiệm 

8 tháng 2 2022

Nhận thấy luôn trình luôn đúng \(\forall x\).

Vậy phương trình có vô số nghiệm.

10 tháng 5 2018

\(x+\frac{2}{3}-2\ge2x+\frac{x}{2}\)

\(\Leftrightarrow6x-2\ge15x\)

\(\Leftrightarrow x\le-\frac{2}{9}\)

Vậy \(x\le-\frac{2}{9}\)

6 tháng 11 2019

Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath

11 tháng 11 2019

Thanks cô

không cần giỏi cũng giải được mà. cứ giải đi không cần biết đúng hay sai là được

THẾ LÀ GIỎI RÙI

2 tháng 2 2016

nhưng mình nghĩ mãi không ra nếu bạn nói được như vậy thì thử giải giúp mình xem

6 tháng 11 2019

+) Với x =0 => y = -1 hoặc y =1 . Thay vào thỏa mãn

+) Với x khác 0

Có: \(x^4+x^3+x^2+x+1=y^2\)

<=> \(4x^4+4x^3+4x^2+4x+4=4y^2\)

=> \(4y^2=\left(4x^4+4x^3+x^2\right)+\left(3x^2+4x+4\right)>\left(4x^4+4x^3+x^2\right)=\left(2x+x\right)^2\)(1)

( vì \(3x^2+4x+4>0\))

và \(4y^2=\left(4x^4+x^2+4+4x^3+8x^2+4x\right)-5x^2< \left(4x^4+x^2+4+4x^3+8x^2+4x\right)\)

                                                                                                            \(=\left(2x+x+2\right)^2\)(2)

( vì x khác 0 => \(x^2>0\))

tỪ (1) VÀ (2) => \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)

=> \(4y^2=\left(2x^2+x+1\right)^2\)

=> \(\left(2x^2+x\right)^2+3x^2+4x+4=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1\)

<=> \(x^2-2x-3=0\)

<=> x = -1 hoặc x = 3

Với x =-1 => y = -1 hoặc 1 . Thử lại thỏa mãn

Với x = 3 => y = 11 hoặc -11. Thử lại thỏa mãn.

Vậy: phương trình trên có nghiệm ( x; y ) là \(\left(0;\pm1\right);\left(-1;\pm1\right);\left(3;\pm11\right)\)