Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
\(x^5=x^4+x^3+x^2+x+2\)
\(\Leftrightarrow x^5-1-\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)=0\)(1)
Ta tiếp tục xét phương trình này
\(x^4+x^3+x^2+x+1=0\)(2)
Nhân cả hai vế của phương trình (2) cho x - 1 , ta được
\(\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Leftrightarrow x^5-1=0\Leftrightarrow x^5=1\)(3)
Phương trình (3) có nghiệm bằng x = 1 , nhưng giá trị này không thỏa mãn ở phương trình (2)
=) ptvn
Suy ra phương trình (1) có dạng
\(x-2=0\)
\(\Leftrightarrow x=2\)
Tập nghiệm của phương trình là S={2}
Chúc bạn học tốt =))
Nhận thấy luôn trình luôn đúng \(\forall x\).
Vậy phương trình có vô số nghiệm.
\(x+\frac{2}{3}-2\ge2x+\frac{x}{2}\)
\(\Leftrightarrow6x-2\ge15x\)
\(\Leftrightarrow x\le-\frac{2}{9}\)
Vậy \(x\le-\frac{2}{9}\)
Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
không cần giỏi cũng giải được mà. cứ giải đi không cần biết đúng hay sai là được
THẾ LÀ GIỎI RÙI
nhưng mình nghĩ mãi không ra nếu bạn nói được như vậy thì thử giải giúp mình xem
+) Với x =0 => y = -1 hoặc y =1 . Thay vào thỏa mãn
+) Với x khác 0
Có: \(x^4+x^3+x^2+x+1=y^2\)
<=> \(4x^4+4x^3+4x^2+4x+4=4y^2\)
=> \(4y^2=\left(4x^4+4x^3+x^2\right)+\left(3x^2+4x+4\right)>\left(4x^4+4x^3+x^2\right)=\left(2x+x\right)^2\)(1)
( vì \(3x^2+4x+4>0\))
và \(4y^2=\left(4x^4+x^2+4+4x^3+8x^2+4x\right)-5x^2< \left(4x^4+x^2+4+4x^3+8x^2+4x\right)\)
\(=\left(2x+x+2\right)^2\)(2)
( vì x khác 0 => \(x^2>0\))
tỪ (1) VÀ (2) => \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)
=> \(4y^2=\left(2x^2+x+1\right)^2\)
=> \(\left(2x^2+x\right)^2+3x^2+4x+4=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1\)
<=> \(x^2-2x-3=0\)
<=> x = -1 hoặc x = 3
Với x =-1 => y = -1 hoặc 1 . Thử lại thỏa mãn
Với x = 3 => y = 11 hoặc -11. Thử lại thỏa mãn.
Vậy: phương trình trên có nghiệm ( x; y ) là \(\left(0;\pm1\right);\left(-1;\pm1\right);\left(3;\pm11\right)\)
\(x^5+x^4+x^3+x^2+x=0\)
⇔\(\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)=0\)
⇔\(x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=0\)
⇔\(\left(x+1\right)\left(x^4+x^2+1\right)=0\)
⇔ \(\left[{}\begin{matrix}x+1=0\\x^4+x^2+1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x\in\varnothing\end{matrix}\right.\)