K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

Ta có: \(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)

\(\Rightarrow x-3+x+5=8\)

\(\Rightarrow2x=6\Rightarrow x=3\)

10 tháng 12 2018

\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\Leftrightarrow\left|x-3\right|+\left|x+5\right|=8\) (1)

Nếu \(x< -5\) thì (1) trở thành: 

      \(3-x+\left(-x-5\right)=8\Leftrightarrow-2x-2=8\Leftrightarrow x=-5\) (loại)

-Nếu \(-5\le x< 3\) thì (1) trở thành:

       \(3-x+x+5=8\Leftrightarrow8=8\)

-Nếu \(x>3\) thì (1) trở thành: 

        \(x-3+x+5=8\Leftrightarrow2x+2=8\Leftrightarrow x=3\) (thỏa mãn)

Vậy \(-5\le x\le3\)

24 tháng 7 2017

=>\(\sqrt{\left(x+3\right)^2}\)\(\sqrt{\left(x+4\right)^2}\)+\(\sqrt{\left(x+5\right)^2}\)=9x

=> x + 3 + x + 4 + x + 5 = 9x

=> - 6x = - 12

=> x=2

25 tháng 7 2017

Ủa sao phá đc trị tuyệt đối hay v bạn? (căn a^2 = trị tuyệt đối của a ) 

1. Giải phương trình:1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)5/ \(x^2-\left(m+1\right)x+2m-6=0\)6/ \(615+x^2=2^y\)2.a, Cho các số dương a,b thoả mãn \(a+b=2ab\).Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).Tính GTNN và GTLN của biểu thức \(P=x+y\).3. Cho hàm...
Đọc tiếp

1. Giải phương trình:

1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)

3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)

4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

5/ \(x^2-\left(m+1\right)x+2m-6=0\)

6/ \(615+x^2=2^y\)

2.

a, Cho các số dương a,b thoả mãn \(a+b=2ab\).

Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).

b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).

Tính GTNN và GTLN của biểu thức \(P=x+y\).

3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).

4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).

0
31 tháng 8 2015

\(\sqrt{\left(2x\right)^2+2.2x.5+5^2}+\sqrt{x^2+2.x.3+3^2}=10x-20\)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x+3\right)^2}=10x-20\)

\(\Leftrightarrow2x+5+x+3=10x-20\)

\(\Leftrightarrow7x=28\Leftrightarrow x=4\)

10 tháng 9 2020
  • giải phương trình sau:\(\sqrt{x^2+10x+26}+\sqrt{2x^2+20x+57}=1+\sqrt{7}\)bạn nào giải được mình bái phục bạn ấy à mình làm youtube nhé youtube của mình là: Long VH đăng ký nhé thanks

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

6 tháng 8 2015

\(\sqrt{x^2-10x+25}=7-2x=>\sqrt{\left(x-5\right)^2}=7-2x=>!x-5!=7-2x\)

\(x-5=7-2x\left(x>=5\right)=>3x=7+5=>x=4\)

\(5-x=7-2x\left(x2x-x=7-5=>x=2\)

9 tháng 7 2019

\(\sqrt{25x^2-10x+1}=4x+9\)

\(\Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x+9\)

\(\Leftrightarrow\left|5x-1\right|=4x+9\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=4x+9\\5x-1=-4x-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-\frac{8}{9}\end{cases}}}\)

Vậy ... 

9 tháng 7 2019

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}-\sqrt{x+1}=0\)

\(\Leftrightarrow\sqrt{x+1}.\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)

Vậy ...