K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ \(2x - 2\) ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = \(2x - 2\)
\(x^2-2x+4 \) = \((2x - 2)^2\)
⇔ \(x^2-2x+4 \) = \(4x^2 - 8x + 4 \)
⇔ \(0 = 3x^2 - 6x \)
⇔ 0 = \(3x(x-1)\)
\(\begin{cases} x=0\\ x-1=0 \end{cases} \)
Mà x ≥ 1
Vậy x ∈ { 1}

14 tháng 7 2021

Xin lỗi mình lm sai chút :)))
Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ 2x − 2 ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = 2x−2
⇔ \(x^2 - 2x + 4\)\((2x-2)^2\)
⇔ 0=\(3x^2 - 6x \)
⇔ 0 = 3x(x−2)
\(\left[\begin{array}{} x=0\\ x=2 \end{array} \right.\)
Mà x ≥ 1
→ x ∈ {2}

NV
22 tháng 1 2022

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+5x+12}=a>0\\\sqrt{2x^2+3x+2}=b>0\end{matrix}\right.\) \(\Rightarrow x+5=\dfrac{a^2-b^2}{2}\)

Phương trình trở thành:

\(a+b=\dfrac{a^2-b^2}{2}\)

\(\Leftrightarrow\left(a-b-2\right)\left(a+b\right)=0\)

\(\Leftrightarrow a-b-2=0\) (do \(a+b>0\))

\(\Leftrightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+5x+12}=\sqrt{2x^2+3x+2}+2\)

\(\Leftrightarrow2x^2+5x+12=2x^2+3x+6+4\sqrt{2x^2+3x+2}\)

\(\Leftrightarrow x+3=2\sqrt{2x^2+3x+2}\) (\(x\ge-3\))

\(\Leftrightarrow x^2+6x+9=4\left(2x^2+3x+2\right)\)

\(\Leftrightarrow7x^2+6x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)

22 tháng 1 2022

cảm ơn Thầy nhiều ạ

21 tháng 9 2019

Điều kiện : \(x\ge0\)

Ta có : \(\sqrt{3x+1}-\sqrt{2x+2}=2\sqrt{x}-\sqrt{x+3}\)

            \(\Leftrightarrow3x+1+2x+2-2\sqrt{6x^2-8x+2}=4x+x+3-4\sqrt{x^2+3x}\)

            \(\Leftrightarrow\sqrt{6x^2+8x+2}=2\sqrt{x^2+3x}\)

              \(\Leftrightarrow6x^2+8x+2=4\left(x^2+3x\right)\)

             \(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow x=1\)

Vậy nghiệm phương trình đã cho là : \(x=1\)

Chúc bạn học tốt !!!

16 tháng 9 2020

Ta có: \(x^2+2x+2x\sqrt{x+3}=9-\sqrt{x+3}\)       \(\left(ĐK:x\ge-3\right)\)

    \(\Leftrightarrow\left(x^2+2x\sqrt{x+3}+x+3\right)+x+\sqrt{x+3}=12\)

    \(\Leftrightarrow\left(x+\sqrt{x+3}\right)^2+\left(x+\sqrt{x+3}\right)-12=0\)

    \(\Leftrightarrow\left(x+\sqrt{x+3}\right)\left(x+\sqrt{x+3}+1\right)-12=0\)

Đặt \(a=x+\sqrt{x+3}\)\(\Leftrightarrow\)\(a+1=x+\sqrt{x+3}+1\)     

Ta lại có: \(a.\left(a+1\right)-12=0\)

         \(\Leftrightarrow a^2+a-12=0\)

         \(\Leftrightarrow a^2-3a+4a-12=0\)

         \(\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\)

         \(\Leftrightarrow\left(a+4\right)\left(a-3\right)=0\)

         \(\Leftrightarrow\orbr{\begin{cases}a+4=0\\a-3=0\end{cases}}\)

\(a+4=0\)\(\Leftrightarrow\)\(x+\sqrt{x+3}+4=0\)

                            \(\Leftrightarrow\)\(x+4=-\sqrt{x+3}\)

                            \(\Leftrightarrow\)\(\left(x+4\right)^2=\left(-\sqrt{x+3}\right)^2\)

                            \(\Leftrightarrow\)\(x^2+8x+16=x+3\)

                            \(\Leftrightarrow\)\(x^2+7x+13=0\)

                            \(\Leftrightarrow\)\(\left(x^2+7x+\frac{49}{4}\right)+\frac{3}{4}=0\)

                            \(\Leftrightarrow\)\(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}=0\)

   Vì \(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}>0\forall x\)mà \(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}=0\)

         \(\Rightarrow\)Phương trình \(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}=0\)vô nghiệm

\(a-3=0\)\(\Leftrightarrow\)\(x+\sqrt{x+3}-4=0\)

                            \(\Leftrightarrow\)\(x-3=-\sqrt{x+3}\)

                            \(\Leftrightarrow\)\(\left(x-3\right)^2=\left(-\sqrt{x+3}\right)^2\)

                            \(\Leftrightarrow\)\(x^2-6x+9=x+3\)

                            \(\Leftrightarrow\)\(x^2-7x+6=0\)

                            \(\Leftrightarrow\)\(\left(x^2-x\right)-\left(6x-6\right)=0\)

                            \(\Leftrightarrow\)\(x.\left(x-1\right)-6.\left(x-1\right)=0\)

                            \(\Leftrightarrow\)\(\left(x-6\right).\left(x-1\right)=0\)

                            \(\Leftrightarrow\)\(\orbr{\begin{cases}x-6=0\\x-1=0\end{cases}}\)

                            \(\Leftrightarrow\)\(\orbr{\begin{cases}x=6\left(TM\right)\\x=1\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{1;6\right\}\)

19 tháng 9 2020

Tính nhanh:3.8.46+2.3.5.12+19.4.6

30 tháng 7 2018

kuchiyose edo tensei

nhờ vào năng lực rinegan , ta có thể  đoán dc

  \(\left(\sqrt{1+x}+\sqrt{8-x}\right)^2=1+x+8-x-2\sqrt{\left(X+1\right)\left(8-x\right)}\)

vậy pt sẽ như sau

\(a,\left(\sqrt{1+x}+\sqrt{8-x}\right)^2-\sqrt{\left(1+x\right)\left(8-x\right)}=3\) " thêm bớt nếu m thông minh sẽ hiểu "

\(9+2\sqrt{\left(1+x\right)\left(8-x\right)}-\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

\(\sqrt{\left(1+x\right)\left(8-x\right)}=-6\)

\(\left(1+x\right)\left(8-x\right)=36\)

đến đây m có thể tự làm

c)  \(\sqrt{x+5}=5-x^2\)

      \(x+5=\left(5-x\right)^2\)

     \(x+5=x^4-10x^2+25\)  " rồi xong pt bậc 4 :)

 \(x^4-10x^2-x+20=0\)

\(x^4=10x^2+x-20\)

\(x^4+2mx^2+m^2=10x^2+x-20+2mx^2+m^2\)

\(\left(x^2+m\right)^2=2x^2\left(5+m\right)+x+\left(m^2-20\right)\)

\(\Delta=1-8\left(5+m\right)\left(m^2-20\right)\)

\(\Delta=1-8\left(5m^2-100+m^3-20m\right)\)

\(\Delta=1-40m^2+800-8m^3+160m\)

\(\Delta=-\left(2m+9\right)\left(4m^2+2m-89\right)\)

lấy m= -9/2 , cho nhanh thay vào ta đươc

\(\left(x^2-\frac{9}{2}\right)^2=2x^2\left(5-\frac{9}{2}\right)+x+\left(\frac{9}{2}^2-20\right)\)

\(\left(x^2-\frac{9}{2}\right)^2=x^2+x+\frac{1}{4}\)

\(\left(x^2-\frac{9}{2}\right)^2=\left(x+\frac{1}{2}\right)^2\)

\(\hept{\begin{cases}x^2-\frac{9}{2}=x+\frac{1}{2}\\x^2-\frac{9}{2}=-x-\frac{1}{2}\end{cases}}\)

đến đây cậu có thể làm tiếp :)

câu B hơi gắt cần time suy nghĩ :)

a, \(\sqrt{x^2+2x-5}\)\(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+2x-5=2x-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

#mã mã#

b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)

\(\Leftrightarrow x\left(x^3-3x+1\right)\)\(x\left(x^3-1\right)\)

\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0

\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0

\(\Leftrightarrow\)x( 2-3x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)

vậy pt vô nghiệm

#mã mã#

9 tháng 11 2017

bạn sử dụng : \(\sqrt{x}\)= a <=>  a > hoặc bằng 0 

                                               và x= a^2