K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xét vế trái 

\(\sqrt{x-2}\)\(+\sqrt{10-x}\)\(=< \sqrt{2\left(x-2+10-x\right)}\)\(=< 4\)

=> vp=<4 

=>\(x^2-12x+40=< 4\)

=> \(\left(x-6\right)^2=< 0\)

=> xảy ra dấu = <=> x=6 

vậy pt có nghiệm là 6 

20 tháng 5 2023

`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12`     `ĐK: x >= 0`

`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`

`<=>12\sqrt{3x}=12`

`<=>\sqrt{3x}=1`

`<=>3x=1<=>x=1/3` (t/m)

`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36`   `ĐK: x >= -1`

`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`

`<=>12\sqrt{x+1}=36`

`<=>\sqrt{x+1}=3`

`<=>x+1=9`

`<=>x=8` (t/m)

Đk: `x >= 0`.

`<=> sqrtx + sqrt(x+3) + 2sqrt(x(x+3)) - (3x+9) + 5x = 0`

Đặt `sqrt x = a, sqrt(x+3) = b`

`<=> a + b + 2ab - 3b^2 + 5a^2 = 0`

`<=> (a+b)(5a+1-3b) = 0`

`<=> a = -b` hoặc `5a + 1 = 3b`.

Đến đây bạn biến đổi ẩn rồi tự giải tiếp ha. 

26 tháng 2 2023
15 tháng 1 2019

xét vế trái :

\(\sqrt[]{x-2}+\sqrt{10-x}=< \sqrt{2\left(x-2+10-x\right)}=< 4\)

=>vp=<4

=>\(x^2-12x+40=< 4\)

=>\(\left(x-6\right)^2=< 0\)

=> xảy ra dấu = <=>x=6

vậy pt có nghiệm là 6

30 tháng 11 2017

Asp dụng BĐT Bunha, ta có:

\(\left(\sqrt{x-2}+\sqrt{10-x}\right)^2\le\left(1+1\right)\left(x-2+10-x\right)\le16\)

\(\Rightarrow\sqrt{x-2}+\sqrt{x-10}\le4\)

\(x^2-12x+40=\left(x-6\right)^2+4\ge4\)

\(\Rightarrow VT\le4\le VT\)

Dấu " = " xảy ra khi \(\Leftrightarrow VT=4=VT\)

\(\Leftrightarrow x=6\)

30 tháng 11 2017

Thanks bạn Wrecking ball rất nhiều

15 tháng 5 2016

Đặt: t=căn(x-2)+căn(10-x),t>0 

= >t^2=(căn(x-2)+căn(10-x))^2 <=BCS (1^2+1^2)(x-2+10-x)=16

= >!t!<=4

= >0<=t<=4

Dấu”=” xảy ra <= >căn(x-2)=căn(10-x)< =>x=6

Mặt khác: x^2-12x+40=(x-6)^2+4>=4, dấu”=” xảy ra <= >x=6
= >căn(x-2)+căn(10-x)<=x^2-12x+40. Vậy S=

15 tháng 5 2016

ra x=6 đúng ko nhỉ 

8 tháng 8 2016

Rút gọn phương trình đc

\(\left(\sqrt{x+1}+2\right)^2=x+1\)

Xét 2 trường hợp 1 cái là bằng căn của x+1, 1 cái là bằng âm căn của x+1.

rồi giải pt là ra.

Kết luận là X=0 

23 tháng 6 2019

Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)

\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)

do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))

\(\Rightarrow x=\frac{k^2-2}{4}\)

do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)

=> ko tồn tại cặp số nguyên dương x,y tmđkđb

13 tháng 5 2023

`\sqrt{x-2}-\sqrt{x(x-2)}=0`     `ĐK: x >= 2`

`<=>\sqrt{x-2}(1-\sqrt{x})=0`

`<=>[(\sqrt{x-2}=0),(1-\sqrt{x}=0):}`

`<=>[(x-2=0),(\sqrt{x}=1):}`

`<=>[(x=2(t//m)),(x=1(ko t//m)):}`