K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 12 2020

ĐKXĐ:

\(\left(2x+2-2\sqrt{5x-1}\right)+\left(\sqrt{5x^2+x+3}-\left(2x+1\right)\right)+x^2-3x+2=0\)

\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{x+1+\sqrt{5x-1}}+\dfrac{x^2-3x+2}{\sqrt{5x^2+x+3}+2x+1}+x^2-3x+2=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\dfrac{2}{x+1+\sqrt{5x-1}}+\dfrac{1}{\sqrt{5x^2+x+3}+2x+1}+1\right)=0\)

\(\Leftrightarrow x^2-3x+2=0\)

NV
22 tháng 2 2021

1.

ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)

\(\Leftrightarrow3\left(x^2-x\right)+\dfrac{x^2-x}{x+1+\sqrt{3x+1}}+\dfrac{x^2-x}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow\left(x^2-x\right)\left(3+\dfrac{1}{x+1+\sqrt{3x+1}}+\dfrac{1}{x+2+\sqrt{5x+4}}\right)=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow...\)

NV
22 tháng 2 2021

2.

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{2-8x^3}=b\end{matrix}\right.\)

Ta được hệ:

\(\left\{{}\begin{matrix}\left(2a-1\right)b=a\\a^3+b^3=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2ab\\\left(a+b\right)^3-3ab\left(a+b\right)=2\end{matrix}\right.\)

\(\Rightarrow8\left(ab\right)^3-6\left(ab\right)^2=2\)

\(\Leftrightarrow\left(ab-1\right)\left[4\left(ab\right)^2+ab+1\right]=0\)

\(\Leftrightarrow ab=1\Rightarrow a+b=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\ab=1\end{matrix}\right.\) \(\Leftrightarrow a=b=1\)

\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

NV
13 tháng 1 2021

ĐKXĐ: \(x\ge\dfrac{1}{5}\)

\(\Leftrightarrow2x^2+x-3+2x-\sqrt{5x-1}+\sqrt[3]{x-9}+2\le0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{4x^2-5x+1}{2x+\sqrt{5x-1}}+\dfrac{x-1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt{5x-1}}+\dfrac{1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\right)\le0\)

\(\Leftrightarrow x-1\le0\)

\(\Rightarrow\dfrac{1}{5}\le x\le1\)

27 tháng 2 2021
Tự giải . ko làm mà đòi có ăn thì chỉ ăn cái đó

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

28 tháng 2 2021
Không làm mà đòi có an thì chỉ có an đầu
4 tháng 12 2016

Bạn dùng liên hợp là ra mà

NV
21 tháng 7 2021

ĐKXĐ: \(x>\dfrac{1}{5}\)

\(1-3x^2< \left(x+2\right)\sqrt[]{5x-1}+5x-1\)

\(\Leftrightarrow3x^2+5x-2+\left(x+2\right)\sqrt{5x-1}\ge0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)+\left(x+2\right)\sqrt{5x-1}>0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1+\sqrt{5x-1}\right)>0\)

\(\Leftrightarrow3x-1+\sqrt{5x-1}>0\)

\(\Leftrightarrow\sqrt{5x-1}>1-3x\)

TH1: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{5}\\1-3x< 0\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{3}\)

TH2: \(\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\5x-1>9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\9x^2-11x+2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{9}< x\le\dfrac{1}{3}\)

Kết luận: \(x>\dfrac{2}{9}\)