Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1)(x2+3x-2)-(x3-1)=0
<=>(x-1)(x2+3x-2)-(x-1)(x2+x+1)=0
<=>(x-1)(x2+3x-2-(x2+x+1))=0
<=>(x-1)(x2+3x-2-x2-x-1)=0
<=>(x-1)(2x-3)=0
<=>x-1=0 hay 2x-3=0
<=>x=1 hay x=\(\frac{3}{2}\)
\(\left(x^2-4\right)-\left(4x^2+4x+1\right)-2x+3x^2=0\)
\(\Leftrightarrow\left(x^2+3x^2-4x^2\right)+\left(-4x-2x\right)+\left(-4-1\right)=0\)
\(\Leftrightarrow-6x-5=0\Leftrightarrow x=-\frac{5}{6}\)
Vậy nghiệm phương trình là \(x=-\frac{5}{6}\)
\(\left(x-2\right)\left(x+2\right)-\left(2x+1\right)^2=x\left(2-3x\right)\)
\(\Leftrightarrow x^2-4-\left(4x^2+4x+1\right)=2x-3x^2\)
\(\Leftrightarrow x^2-4-4x^2-4x-1-2x+3x^2=0\)
\(\Leftrightarrow-5-6x=0\)
\(\Leftrightarrow-6x=5\Leftrightarrow x=\frac{-5}{6}\)
\(\left(6x+7\right)^2.\left(3x+4\right).\left(x+1\right)=6\)
<=> \(\left(36x^2+84x+49\right)\left(3x^2+7x+4\right)=6\)
Đặt: \(3x^2+7x+4=t\)
=> \(36x^2+84x+49=12\left(3x^2+7x+4\right)+1=12t+1\)
Ta có phương trình ẩn t:
\(t\left(12t+1\right)=6\)
<=> \(12t^2+t-6=0\)
<=> \(12t^2-8t+9t-6=0\)
<=> \(4t\left(3t-2\right)+3\left(3t-2\right)=0\)
<=> \(\left(4t+3\right)\left(3t-2\right)=0\)
<=> \(\orbr{\begin{cases}t=-\frac{3}{4}\\t=\frac{2}{3}\end{cases}}\)
Với \(t=-\frac{3}{4}\) ta có phương trình: \(3x^2+7x+4=-\frac{3}{4}\)
<=> \(x^2+\frac{7}{3}x+\frac{19}{12}=0\)
<=> \(x^2+2.x.\frac{7}{6}+\frac{49}{36}=-\frac{2}{9}\)
<=> \(\left(x+\frac{7}{6}\right)^2=-\frac{2}{9}\)phương trình vô nghiệm
+) Với \(t=\frac{2}{3}\)ta có: \(3x^2+7x+4=\frac{2}{3}\)
<=> \(x^2+\frac{7}{3}x+\frac{10}{9}=0\)
<=> \(x^2+2.x.\frac{7}{6}+\frac{49}{36}=\frac{1}{4}\)
<=> \(\left(x+\frac{7}{6}\right)^2=\frac{1}{4}\)
<=> \(x=-\frac{2}{3}\)
hoặc \(x=-\frac{5}{3}\)
Kết luận:...
Cách khác cô Chi nhé ! , nhưng cách này tới đấy xin cùy.
\(\left(6x+7\right)^2\left(3x+4\right)\left(x+1\right)=6\)
\(108x^4+504x^3+879x^2+679x+196=6\)
\(108x^4+504x^3+879x^2+679x+190=0\)
1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)
⇔\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)
⇔-1\(x^2\) - 4x= 1- \(x^2\)
⇔ -1\(x^2\) -4x+ \(x^2\) = 1
⇔-4x=1
⇔ x = \(\dfrac{-1}{4}\)
a: =>|x-7|=3-2x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)
b: =>|2x-3|=4x+9
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)
c: =>3x+5=2-5x hoặc 3x+5=5x-2
=>8x=-3 hoặc -2x=-7
=>x=-3/8 hoặc x=7/2
\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)
\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)
\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)
\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)
\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)
\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)
\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)
\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
VẬY S=1;3/2 :)))))))))))))))))))))))))