K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

Thay xyz = 2011 vào N được : 

\(N=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}=\frac{xy.xz}{xy\left(z+xz+1\right)}+\frac{y}{y\left(z+xz+1\right)}+\frac{z}{z+xz+1}\)

\(=\frac{xz}{z+xz+1}+\frac{1}{z+xz+1}+\frac{z}{z+xz+1}=\frac{z+xz+1}{z+xz+1}=1\)

19 tháng 4 2017

nếu x<0 thì 2011x<0

vì tổng của các giá trị tuyệt đối luôn lớn hơn hoặc bằng 0 nên x<0 loại

xét nếu \(x\ge0\) thì ta có:

\(x+1+x+2+x+3+...+x+2010=2011x\)

\(\Leftrightarrow2010x+2021055=2011x\)

\(\Leftrightarrow x=2021055\)

vậy phương trình có tập nghiệm là S={2021055}

27 tháng 4 2022

a) 2x-7=11x+11

<=> 2x-11x=11+7

<=> -9x=17

<=> x= -17/9

b) 2011x -4 =x+6

<=> 2011x-x=6+4

<=> 2010x=10

<=> x=10/2010

<=> x=1/201

 

c) 5(2x-3)-2(3x-5)=0

<=> 10x-15-6x+10=0

<=> 10x-6x=15-10

<=>4x=5

<=> x=5/4

 

27 tháng 10 2015

Phân thức thứ nhất

\(\frac{2011x}{xy+2011x+2011}=\frac{2011xz}{xyz+2011xz+2011z}=\frac{2011xz}{2011+2011xz+2011z}=\frac{2011xz}{2011\left(1+xz+z\right)}=\frac{xz}{xz+z+1}\)

Phân thức thứ hai

\(\frac{y}{yz+y+2011}=\frac{y}{yz+y+xyz}=\frac{y}{y\left(z+1+xz\right)}=\frac{1}{xz+z+1}\)

Cộng ba phân thức

=> biểu thức = \(\frac{xz+z+1}{xz+z+1}=1\)

 

11 tháng 12 2018

\(\frac{2011x}{xy+2011x+2011}+\frac{y}{yz+y+2011}+\frac{z}{zx+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{zx+z+1}\)

\(=\frac{x^2yz}{xy.\left(xz+z+1\right)}+\frac{y}{y.\left(xz+z+1\right)}+\frac{z}{zx+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{zx+z+1}\)

\(=\frac{xz+1+z}{xz+1+z}\)

\(=1\)

đpcm

21 tháng 12 2018

Tại sao lại có nhìu đứa rảnh háng đi trả lời câu này nhỉ ?

b: 5x^2+5y^2+8xy-2x+2y+2=0

=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0

=>(x-1)^2+(y+1)^2+(2x+2y)^2=0

=>x=1 và y=-1

M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1

26 tháng 11 2021

=(x4−x3+2011x2)+

 

(x3−x2+2011x)+(x2−x+2011)

=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)

=(x2+x+1)(x2−x+2011)

=(x4−x3+2011x2)+(x3−x2+2011x)+(x2−x+2011)

=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)

=(x2+x+1)(x2−x+2011)

 

 

 

 

 

 

 

x3−x2+2011x)+(x2−x+2011)

=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)=(x2+x+1)(x2−x+2011)

 

 

 

 

 

26 tháng 11 2021

seo gần nhau hía:>

23 tháng 2 2020

Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)

=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)

=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)

=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)

=> \(x^2-1=0\)

=> \(x^2=1\)

=> \(x=\pm1\)

Vậy phương trình có 2 nghiệm là x = 1, x = -1 .

24 tháng 2 2020

Thanks bn

20 tháng 10 2015

x(x-2010)-2011x+2010.2011=0

x(x-2010)-2011(x-2010)=0

(x-2010)(x-2011)=0

TH 1:                                 TH 2:

x-2010=0                            x-2011=0

=> x=2010                          =>x=2011

vậy x=2010 hoặc x=2011