Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>5x-5+17x=1-12x-4
=>22x-5=-12x-3
=>34x=2
hay x=1/17
b: =>\(\left(x-3\right)^2-4x\left(x-3\right)=0\)
=>(x-3)(-3x-3)=0
=>x=3 hoặc x=-1
c: =>(x-4)(x-6)=0
=>x=4 hoặc x=6
a) \(4x-16=3x\left(x-4\right)\)
\(4\left(x-4\right)=3x\left(x-4\right)\)
\(3x\left(x-4\right)-4\left(x-4\right)=0\)
\(\left(x-4\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{4}{3}\end{matrix}\right.\)
b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\left(đk:x\ne0,2\right)\)
\(\dfrac{x\left(x+2\right)-\left(x-2\right)}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
\(x^2+2x-x+2=2\)
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
a) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
Suy ra: x+2=0
hay x=-2(thỏa ĐK)
Vậy: S={-2}
d)
ĐKXĐ: \(x\notin\left\{1;3\right\}\)
Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)
Suy ra: \(x^2-3x+5x-15=x^2-1-8\)
\(\Leftrightarrow2x-15+9=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3(loại)
Vậy: \(S=\varnothing\)
\(a)PT\Leftrightarrow4x^2-9-4x^2+20x+3x=0.\\ \Leftrightarrow23x=9.\\ \Leftrightarrow x=\dfrac{9}{23}.\\ b)PT\Leftrightarrow\left(2x+1\right)\left(4x-3\right)-\left(2x+1\right)\left(2x-1\right)=0.\\\Leftrightarrow\left(2x+1\right)\left(4x-3-2x+1\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(2x-2\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)=0. \)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}.\\x=1.\end{matrix}\right.\)
Ta có (\(^{x^{2^{ }}^{ }+3x}\)) (\(^{x^{2^{ }}+3x+4}\))
Đặt \(x^{2^{ }^{ }}+3x\) là a ta có
a.(a+4)=-4
4a+\(a^2\) -4=0
\(^{ }\left(a-2\right)^2\)=0
Suy ra a=2
hay \(x^{2^{ }^{ }^{ }}+3x=2\)
\(x^2+3x-2=0\)
𝑥=−3±17√/2
xy+x+2y=-2
a) \(xy+x+2y=-2\)
\(xy+x+2y+2=0\)
\(x\left(y+1\right)+2\left(y+1\right)=0\)
\(\left(x+2\right)\left(y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=-1\end{cases}}}\)
b) Chia cả hai vế cho x^2 ta được
\(x^2-3x+4-\frac{3}{x}+\frac{1}{x^2}=0\)
\(\left(x^2+\frac{1}{x^2}\right)-3\left(x+\frac{1}{x}\right)+4=0\)
Đặt a=x+1/x thì => x^2 +1/x^2=a^2-2, ta được
\(a^2-3a+2=0\)
\(a\left(a-2\right)-\left(a-2\right)=0\)
\(\left(a-1\right)\left(a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)
Với a=1 ta có: \(x^2-x+1=0\)vô nghiệm
Với a=2 ta có: \(x^2-2x+1=0\Rightarrow x=1\)
Vậy nghiệm của pt là x=1