K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

a) x(x+2)+a2-3=2a(x+1)

<=> x2+2x-2ax+a2-2a-3=0

<=> (x2-ax-x)-(ax-a2-a)+(3a-3a-3)=0

<=> (x-a-1)(x-a+3)=0

\(\Leftrightarrow\orbr{\begin{cases}x=a+1\\x=a-3\end{cases}}\)

25 tháng 12 2021

Câu 4: 

\(=\dfrac{a\left(a-b\right)-c\left(a-b\right)}{a\left(a+b\right)-c\left(a+b\right)}=\dfrac{a-b}{a+b}\)

4 tháng 8 2021

a/ Chứng minh:

\(\left(x+a\right)\left(x+b\right)\)

\(=x^2+bx+ax+ab\)

\(=x^2+\left(ax+bx\right)+ab\)

\(=x^2+x\left(a+b\right)+ab=VP\) (đpcm)

b/ Chứng minh:

\(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)

\(=x^3+cx^2+ax^2+acx+bx^2+bcx+abx+abc\)

\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+bcx+acx\right)+abc\)

\(=x^3+x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)+abc=VP\) (đpcm)

NV
8 tháng 3 2020

Bài 1

a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)

b/

\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)

\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

NV
8 tháng 3 2020

1.

c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)

\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)

\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

18 tháng 1 2022

\(a.x^2-11x+15=-15.\Leftrightarrow x^2-11x+30=0.\)

\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=6.\\x=5.\end{matrix}\right.\)

\(b.2x-3x+10=x.\Leftrightarrow-2x+10=0.\Leftrightarrow x=5.\)

\(c.x^3-4=4.\Leftrightarrow x^3=8.\Leftrightarrow x^3=2^3.\Rightarrow x=2.\)

\(d.x^4+x^3-x^2-x=0.\Leftrightarrow x^2\left(x^2+x\right)-\left(x^2+x\right)=0.\Leftrightarrow\left(x^2-1\right)\left(x^2+x\right)=0.\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)x\left(x+1\right)=0.\Leftrightarrow\left(x-1\right)\left(x+1\right)^2x=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x+1=0.\\x=0.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-1.\\x=0.\end{matrix}\right.\)

14 tháng 3 2021

chỗ dấu suy ra thứ 2 e ko hiểu lắm ạ