K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

\(a,ĐK:-9\le x\le16\\ PT\Leftrightarrow\left(\sqrt{16-x}-3\right)+\left(\sqrt{x+9}-4\right)=0\\ \Leftrightarrow\dfrac{7-x}{\sqrt{16-x}+3}+\dfrac{x-7}{\sqrt{x+9}+4}=0\\ \Leftrightarrow\left(x-7\right)\left(\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}=0\end{matrix}\right.\)

Với \(x\ge-9\) thì \(\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}>0\)

Do đó PT có nghiệm duy nhất \(x=7\)

23 tháng 10 2021

\(b,ĐK:-\sqrt{2}\le x\le\sqrt{2}\\ PT\Leftrightarrow\left(\sqrt{2-x^2}-1\right)+\left(\sqrt{x^2+8}-3\right)=0\\ \Leftrightarrow\dfrac{1-x^2}{\sqrt{2-x^2}+1}+\dfrac{x^2-1}{\sqrt{x^2+8}+3}=0\\ \Leftrightarrow\left(x^2-1\right)\left(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}=0\end{matrix}\right.\)

Với \(x\ge-\sqrt{2}\) thì \(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}>0\)

Vậy pt có tập nghiệm \(x=\pm1\)

 

b: Đặt \(x^2+5x+4=a\)

\(\Leftrightarrow a=5\sqrt{a+24}\)

\(\Leftrightarrow a^2=25a+600\)

\(\Leftrightarrow a^2-25a-600=0\)

\(\Leftrightarrow\left(a-40\right)\left(a+15\right)=0\)

\(\Leftrightarrow a=-15\)

hay S=∅

7 tháng 8 2021

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

7 tháng 8 2021

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

4 tháng 12 2021

\(a,ĐK:x\ge-7\\ PT\Leftrightarrow\sqrt{\left(\sqrt{x+7}+1\right)^2}+\sqrt{x+7-\sqrt{x+7}-6}=4\)

Đạt \(\sqrt{x+7}=a\ge0\)

\(PT\Leftrightarrow\sqrt{\left(a+1\right)^2}+\sqrt{a^2-a-6}=4\\ \Leftrightarrow a+1+\sqrt{a^2-a-6}=4\\ \Leftrightarrow\sqrt{a^2-a-6}=3-a\\ \Leftrightarrow a^2-a-6=a^2-6a+9\\ \Leftrightarrow5a=15\Leftrightarrow a=3\\ \Leftrightarrow\sqrt{x+7}=3\\ \Leftrightarrow x+7=9\\ \Leftrightarrow x=2\left(tm\right)\)

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

11 tháng 12 2020

Đề đúng chưa v