K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

a) \(\left(x^2+2x+2\right)=\left(x+1\right)^2+1>0;\left(x^2+x+2\right)=\left(x+\frac{1}{2}^2\right)+\frac{3}{4}>0\)

Đặt \(y=\frac{x^2+2x+2}{x^2+x+2}=1+\frac{x}{x^2+x+1}\Rightarrow\frac{2x}{x^2+x+2}=2\left(y-1\right)\)

\(\Rightarrow\frac{1}{y}=\frac{x^2+x+2}{x^2+2x+2}=1-\frac{x}{x^2+2x+2}\Rightarrow\frac{x}{x^2+2x+2}=1-\frac{1}{y}\)

Thay vào ta có PT theo ẩn \(y:\) \(\left(1-\frac{1}{y}\right)+2\left(y-1\right)=\frac{7}{10}\)

\(\Leftrightarrow20y^2-17y-10=0\)

\(\Leftrightarrow\left(5y+2\right)\left(4y-5\right)=0\)

\(\Leftrightarrow4y-5=0\left(Vì:y>0\right)\)

\(\Leftrightarrow\frac{x^2+2x+2}{x^2+x+2}=\frac{5}{4}\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow x=1;x=2\)

Vậy ...................................

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x 

16 tháng 12 2022

a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)

\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)

=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0

=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0

=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0

=>(2x^2+120+35x)(2x^2+31x+120)=0

=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)

b: Đặt x^2-3x=a

Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)

\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)

=>(3a+10)(a+5)=6(a^2+7a+12)

=>6a^2+42a+72=3a^2+15a+10a+50

=>3a^2+17a+22=0

=>x=-2 hoặc x=-11/3

NV
29 tháng 6 2019

Nhận thấy \(x=0\) không phải nghiệm, chia cả tử và mẫu vế trái cho x:

\(\frac{2}{3x-5+\frac{2}{x}}+\frac{13}{3x+1+\frac{2}{x}}=6\)

Đặt \(3x-5+\frac{2}{x}=a\)

\(\frac{2}{a}+\frac{13}{a+6}=6\)

\(\Leftrightarrow6a\left(a+6\right)=2\left(a+6\right)+13a\)

\(\Leftrightarrow6a^2+34a-12=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{3}\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x-5+\frac{2}{x}=\frac{1}{3}\\3x-5+\frac{2}{x}=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x^2-\frac{16}{3}x+2=0\\3x^2+x+2=0\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2020

Lời giải:

a) ĐK: $x\neq 8$

PT \(\Leftrightarrow \frac{3}{2(x-8)}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3(x-8)}\)

\(\Leftrightarrow \frac{36}{24(x-8)}+\frac{24(3x-20)}{24(x-8)}+\frac{3(x-8)}{24(x-8)}=\frac{8(13x-102)}{24(x-8)}\)

\(\Rightarrow 36+24(3x-20)+3(x-8)=8(13x-102)\)

\(\Leftrightarrow x=12\) (t/m)

b)

ĐK: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{(x-1)(x-2)}{(x+2)(x-2)}-\frac{x(x+2)}{(x-2)(x+2)}=\frac{5x-2}{(2-x)(x+2)}=\frac{2-5x}{(x-2)(x+2)}\)

\(\Rightarrow (x-1)(x-2)-x(x+2)=2-5x\)

$\Leftrightarrow 0=0$

Vậy PT có nghiệm $x\in\mathbb{R}$ và $x\neq \pm 2$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:
a) ĐKXĐ: $x\neq \pm 3; x\neq 0$

\(A=\frac{3-x}{x+3}.\frac{(x+3)^2}{(x-3)(x+3)}.\frac{x+3}{3x^2}\)

\(=-\frac{x+3}{3x^2}\)

b)

Với $x=-\frac{1}{2}\Rightarrow A=-\frac{-\frac{1}{2}+3}{3(\frac{-1}{2})^2}=\frac{-10}{3}$

c)

Để $A< 0\Leftrightarrow -\frac{x+3}{3x^2}< 0$

$\Rightarrow x+3>0\Rightarrow x>-3$

Vậy $x>-3; x\neq 3; x\neq 0$

NV
3 tháng 4 2019

Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi

Bài 1:

a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)

\(\Leftrightarrow11-2x-3=3x-12\)

\(\Leftrightarrow5x=20\)

\(\Rightarrow x=4\)

b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)

\(\Leftrightarrow10x-15-20x+28=19-2x\)

\(\Leftrightarrow8x=-6\)

\(\Rightarrow x=-\frac{3}{4}\)

c/

\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)

\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)

\(\Leftrightarrow x=3\)

NV
3 tháng 4 2019

d/

\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow79x=158\)

\(\Rightarrow x=2\)

e/

\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)

\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)

\(\Leftrightarrow0=-121\) (vô lý)

Vậy pt vô nghiệm

f/

\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)

\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)

\(\Leftrightarrow6x=-5\)

\(\Rightarrow x=-\frac{5}{6}\)