Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: \(x\ge2\)
pt <=> \(\frac{4\left(x+2\right)-\left(4x+1\right)}{2\sqrt{x+2}+\sqrt{4x+1}}\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)
<=> \(\frac{7}{2\sqrt{x+2}+\sqrt{4x+1}}\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)
<=> \(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)(1)
Đặt : \(t=2\sqrt{x+2}+\sqrt{4x+1}\ge0\)
Ta có: \(t^2=8x+9+4\sqrt{4x^2+9x+2}\)<=> \(2x+3+\sqrt{4x^2+9x+2}=\frac{t^2+3}{4}\)
Phương trình (1) trở thành: \(\frac{t^2+3}{4}=t\Leftrightarrow t^2-4t+3=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=1\end{cases}\left(tm\right)}\)
+) Với t = 1. Ta có:
\(2\sqrt{x+2}+\sqrt{4x+1}=1\)
<=> \(8x+9+4\sqrt{4x^2+9x+2}=1\)
<=> \(\sqrt{4x^2+9x+2}=-2-2x\)
<=> \(\hept{\begin{cases}-2-2x\ge0\\4x^2+9x+2=4x^2+8x+4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le-1\\x=2\end{cases}}\)loại
+) Với t = 3. Ta có:
\(2\sqrt{x+2}+\sqrt{4x+1}=3\)
<=> \(8x+9+4\sqrt{4x^2+9x+2}=9\)
<=> \(\sqrt{4x^2+9x+2}=-2x\)
<=> \(\hept{\begin{cases}-2x\ge0\\4x^2+9x+2=4x^2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le0\\9x+2=0\end{cases}}\Leftrightarrow x=-\frac{2}{9}\left(tmdk\right)\)
Vây:...
ĐK \(x\ge\frac{-1}{4}\)
Với điều kiện đó ta có \(2\sqrt{x+2}+\sqrt{4x+1}>0\)
Biến đổi phương trình đã cho trở thành
\(7\left(2x+3+\sqrt{4x^2+9x+2}\right)7\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\)
\(\Leftrightarrow2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\left(1\right)\)
Đặt \(t=2\sqrt{x+2}+\sqrt{4x+1}\left(t\ge\sqrt{7}\right)\)
\(t^2=8x+9+4\sqrt{4x^2+9x+2}\Rightarrow2x+\sqrt{4x^2+9x+2}=\frac{t^2-9}{4}\)
Thay vào (1) ta được \(t^2-4t+3=0\Leftrightarrow\orbr{\begin{cases}t=1\left(ktm\right)\\t=3\left(tm\right)\end{cases}}\)
Với t=3 ta có:\(2\sqrt{x+2}+\sqrt{4x+1}=3\)giải ra ta được \(x=\frac{-2}{9}\left(tm\right)\)
Vậy pt có 1 nghiệm duy nhất \(x=-\frac{2}{9}\)
\(\sqrt{4x^2-4x+1}=3-x\left(x\in R\right)\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=3-x\\ \Leftrightarrow2x-1=3-x\\ \Leftrightarrow3x=4\Leftrightarrow x=\dfrac{4}{3}\\ \sqrt{9x+9}+\sqrt{x+1}-\sqrt{4x+4}=2\left(x+1\right)\left(x\ge-1\right)\\ \Leftrightarrow\sqrt{x+1}\left(\sqrt{9}+1+\sqrt{4}\right)=2\left(x+1\right)\\ \Leftrightarrow6\sqrt{x+1}=2\left(x+1\right)\\ \Leftrightarrow3\sqrt{x+1}=x+1\\ \Leftrightarrow\sqrt{x+1}\left(3-\sqrt{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+1=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=8\left(tm\right)\end{matrix}\right.\)
a, ĐK: \(x\in R\)
\(\sqrt{4x^2-4x+1}=3-x\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3-x\)
\(\Leftrightarrow\left|2x-1\right|=3-x\)
TH1: \(\left\{{}\begin{matrix}2x-1\ge0\\2x-1=3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{4}{3}\)
TH2: \(\left\{{}\begin{matrix}2x-1< 0\\1-2x=3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x=-2\end{matrix}\right.\Leftrightarrow x=-2\)
a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)
\(\Leftrightarrow25x-4x=-8-75\)
\(\Leftrightarrow21x=-83\)
hay \(x=-\dfrac{83}{21}\)
b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)
\(\Leftrightarrow\left|2x-1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)
\(\Leftrightarrow\left|2x+1\right|=3x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)
d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)
\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)
\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)
\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)
\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)
\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)
\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)
\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)
vậy: Phương trình vô nghiệm
d. \(\sqrt{9x^2+12x+4}=4\)
<=> \(\sqrt{\left(3x+2\right)^2}=4\)
<=> \(|3x+2|=4\)
<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)
\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)
\(\Leftrightarrow x=1\)
\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\left(x\ge-\frac{1}{4}\right)\)
\(\Leftrightarrow2\left(x+2\right)-1+\sqrt{\left(x+2\right)\left(4x+1\right)}=2\sqrt{x+2}+\sqrt{4x+1}\)
\(\Leftrightarrow4\left(x+2\right)-2+2\sqrt{x+2}.\sqrt{4x+1}=4\sqrt{x+2}+2\sqrt{4x+1}\)
Đặt \(\hept{\begin{cases}2\sqrt{x+2}=a\left(a\ge0\right)\\\sqrt{4x+1}=b\left(b\ge0\right)\end{cases}\Rightarrow}a^2-b^2=4\left(x+2\right)-4x-1=7\)\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=7\)(1)
\(pt:a^2-2+ab=2a+2b\)
\(\Leftrightarrow a\left(a+b\right)-2\left(a+b\right)=2\)
\(\Leftrightarrow\left(a-2\right)\left(a+b\right)=2\)(2)
Nhân chéo 2 vế của (1) với (2) được
\(7\left(a-2\right)\left(a+b\right)=2\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow7\left(a-2\right)=2\left(a-b\right)\left(Do\left(a+b\right)>0\right)\)
\(\Leftrightarrow7a-14=2a-2b\)
\(\Leftrightarrow5a=14-2b\)
\(\Leftrightarrow10\sqrt{x+2}=14-2\sqrt{4x+1}\)
\(\Leftrightarrow5\sqrt{x+2}=7-\sqrt{4x+1}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x+1}\le7\\25\left(x+2\right)=49-14\sqrt{4x+1}+4x+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}0\le4x+1\le49\\21x=-14\sqrt{4x+1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\441x^2=196\left(4x+1\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\441x^2-784x-196=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\49\left(9x+2\right)\left(x-2\right)=0\end{cases}}\)
\(\Leftrightarrow x=-\frac{2}{9}\left(TmĐKXĐ\right)\)
Vậy
Incursion_03 em thử nha, sai thì thôi ạ, em hơi nghiện liên hợp r.
ĐK: x>=-1/4
PT \(\Leftrightarrow2x+\frac{31}{9}+\sqrt{4x^2+9x+2}-\frac{4}{9}=2\sqrt{x+2}-\frac{8}{3}+\sqrt{4x+1}-\frac{1}{3}+3\)
\(\Leftrightarrow2\left(x+\frac{2}{9}\right)+\frac{\left(x+\frac{2}{9}\right)\left(4x+\frac{73}{9}\right)}{\sqrt{4x^2+9x+2}+\frac{4}{9}}=\frac{4\left(x+\frac{2}{9}\right)}{2\sqrt{x+2}+\frac{8}{3}}+\frac{4\left(x+\frac{2}{9}\right)}{\sqrt{4x+1}+\frac{1}{3}}\)
\(\Leftrightarrow\left(x+\frac{2}{9}\right)\left[2+\frac{4x+\frac{73}{9}}{\sqrt{4x^2+9x+2}+\frac{4}{9}}-4\left(\frac{1}{2\sqrt{x+2}+\frac{8}{3}}+\frac{1}{\sqrt{4x+1}+\frac{1}{3}}\right)\right]=0\)
Cái ngoặc to em chịu:( đang suy nghĩ