K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2022

\(\text{Đ}K:x^2+2x+3\ge0\\ x^2+6x+1=\left(2x+1\right)\cdot\sqrt{x^2+2x+3}\\ \Leftrightarrow x^2+2x+3+4x+2=\left(2x+1\right)\cdot\sqrt{x^2+2x+3+4}\)

\(\text{ Đặt }\)\(m=\sqrt{x^2+2x+3};n=2x+1\) \(\text{ phương trình trở thành :}\)

\(m^2+2n=mn+4\\ \Leftrightarrow m^2-4-mn+2n=0\\ \Leftrightarrow\left(m-2\right)\left(m+2\right)-n\left(m-2\right)=0\\ \Leftrightarrow\left(m-2\right)\left(m-n-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m-n=-2\end{matrix}\right.\)

`\text{ Với}` \(m=2\\ \Leftrightarrow\sqrt{x^2+2x+3}=2\Leftrightarrow x^2+2x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\left(N\right)\\x=-\sqrt{2}-1\left(N\right)\end{matrix}\right.\)

`\text{Với}`\(m-n=-2\Leftrightarrow\sqrt{x^2+2x+3}-\left(2x+1\right)=-2\\ \Leftrightarrow\sqrt{x^2+2x+3}=-2+2x+1=2x-1\\ \Leftrightarrow x^2+2x+3=4x^2-4x+1\\ \Leftrightarrow3x^2-6x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{15}}{3}\left(N\right)\\x=\dfrac{3-\sqrt{15}}{3}\left(L\right)\end{matrix}\right.\)

20 tháng 5 2022

weo hay thế:33

19 tháng 6 2021

ta có:

pt trên \(< =>x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)

\(< =>\left[\left(x^2+6x\right)+1\right]^2=\left(2x+1\right)^2.\left(x^2+2x+3\right)\)

\(< =>x^4+12x^3+36x^2+2.\left(x^2+6x\right)+1=\left(4x^2+4x+1\right)\left(x^2+2x+3\right)\)

\(< =>x^4+12x^3+38x^2+12x+1=\)

\(4x^4+8x^3+12x^2+4x^3+8x^2+12x+x^2+2x+3\)

\(=4x^4+12x^3+21x^2+14x+3\)

\(< =>-3x^4+17x^2-2x-2=0\)

\(< =>-\left(x^2+2x-1\right)\left(3x^2-6x+2\right)=0\)

đến đây dễ rùi bạn tự giải nhé 

 

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

ĐK: \(x\ge-1\)

\(PT\Leftrightarrow2\left(x-2\right)^2+2\left(x+1\right)-5\left(x-2\right)\sqrt{x+1}=0\)

Đặt \(x-2=a,\sqrt{x+1}=b\left(a\ge-3,b\ge0\right)\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=2b\\2a=b\end{cases}}\)

Đến đây dễ r nhé :P

15 tháng 4 2023

Điều kiện: \(y\ge0\)

pt thứ nhất của hệ \(\Leftrightarrow\left(y-x+3\right)^2=0\) \(\Leftrightarrow y-x+3=0\) \(\Leftrightarrow y=x-3\)

Thay vào pt thứ hai của hệ, ta được  \(2x^2+3x+x-3-\left(3x+1\right)\sqrt{x-3}-2=0\)

\(\Leftrightarrow2x^2+4x-5=\left(3x+1\right)\sqrt{x-3}\)         \(\left(x\ge3\right)\)

\(\Rightarrow\left(2x^2+4x-5\right)^2=\left[\left(3x+1\right)\sqrt{x-3}\right]^2\)

\(\Leftrightarrow4x^4+16x^2+25+16x^3-20x^2-40x=\left(3x+1\right)^2\left(x-3\right)\)

\(\Leftrightarrow4x^4+16x^3-4x^2-40x+25=9x^3-21x^2-17x-3\)

\(\Leftrightarrow4x^4+7x^3+17x^2-23x+28=0\)

Đặt \(f\left(x\right)=4x^4+7x^3+17x^2-23x+28\)

\(f\left(x\right)=4x^4+7x^3+17x^2+4+4+...+4-23x+4\) (có 6 số 4 ở giữa)

\(f\left(x\right)\ge9\sqrt[9]{4x^4.7x^3.17x^2.4^6}-23x+4\) \(=\left(9\sqrt[9]{1949696}-23\right)x+4\)

Hiển nhiên \(9\sqrt[9]{1949696}>23\). Lại có \(x\ge3\) nên \(f\left(x\right)>0\), Như vậy pt \(f\left(x\right)=0\) vô nghiệm. Điều đó có nghĩa là phương trình đã cho vô nghiệm.