K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

\(x^2+\frac{1}{x^2}+16y^2+\frac{1}{y^2}-10=0\)

<=>\(\left(x^2-2+\frac{1}{x^2}\right)+\left(16y^2-8+\frac{1}{y^2}\right)=0\)

<=>\(\left[x^2-2\cdot x\cdot\frac{1}{x}+\left(\frac{1}{x}\right)^2\right]+\left[\left(4y\right)^2-2\cdot4y\cdot\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]=0\)

<=>\(\left(x-\frac{1}{x}\right)^2+\left(4y-\frac{1}{y}\right)^2=0\)

Mà \(\left(x-\frac{1}{x}\right)^2;\left(4y-\frac{1}{y}\right)^2>hoac=0\)

=>\(\hept{\begin{cases}\left(x-\frac{1}{x}\right)^2=0\\\left(4y-\frac{1}{y}\right)^2=0\end{cases}}\)

<=>\(\hept{\begin{cases}x-\frac{1}{x}=0\\4y-\frac{1}{y}=0\end{cases}}\)

đoạn này bạn tự giải tiếp

Vậy x=1 và y=1/2

27 tháng 2 2020

Sorry

Ở trên mình KL thiếu

Còn có x= -1;y=-1/2

24 tháng 2 2018

\(PT\Leftrightarrow x^2+y^2+z^2=xy+yz\)

\(\Leftrightarrow4x^2+4y^2+4z^2=4xy+4yz\)

\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-4yz=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4z^2-4yz+y^2\right)+2y^2=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(2z-y\right)^2+2y^2=0\)

\(\left(2x-y\right)^2+\left(2z-y\right)^2+2y^2\ge0\forall x;y;z\)

Dấu "=" xảy ra khi \(x=y=z=0\)

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

16 tháng 3 2017

x2 - 5x + 4 + x2 - 5x + 6 = 2

<=> 2x2 - 10x + 8 = 0

<=> x2 - 5x + 4 = 0

<=> x = 1 hoặc x = 4

16 tháng 3 2017

X^2-4x-x+4+x^2-2x-3x+6=2                                                                                                                                                               rút gọn và chuyển vế  : 2x^2-10x+8=0                                                                                                                                                bấm máy tính ; x=4 và x=1        

11 tháng 2 2016

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)

\(\Leftrightarrow4\left(x+1\right)^2\left(2x+1\right)\left(2x+3\right)=18.4\)

\(\Leftrightarrow\left(2x+2\right)^2\left(2x+1\right)\left(2x+3\right)=72\)

\(\Leftrightarrow\left(4x^2+8x+3+1\right)\left(4x^2+8x+3\right)-72=0\)

\(\Leftrightarrow\left(4x^2+8x+3\right)^2+\left(4x^2+8x+3\right)-72=0\)

Đặt  y = 4x2+8x+3 ta được

\(y^2+y-72=0\)

\(\Leftrightarrow y^2-8y+9y-72=0\)

\(\Leftrightarrow\left(y-8\right)\left(y+9\right)=0\)

\(\Leftrightarrow y-8=0\Leftrightarrow y=8\)  hoặc  \(y+9=0\Leftrightarrow y=-9\)

Th1: \(y=8\Leftrightarrow4x^2+8x+3=8\)

                    \(\Leftrightarrow4x^2+8x-5=0\Leftrightarrow4x^2+10x-2x-5=0\Leftrightarrow2x\left(2x+5\right)-\left(2x+5\right)=0\)

                   \(\Leftrightarrow\left(2x+5\right)\left(2x-1\right)=0\)

              \(\Leftrightarrow2x+5=0\Leftrightarrow x=-\frac{5}{2}\)   hoặc     \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Th2: \(y=-9\Leftrightarrow4x^2+8x+3=-9\Leftrightarrow4x^2+8x+12=0\Leftrightarrow4\left(x^2+2x+3\right)=0\)

       \(\Leftrightarrow x^2+2x+3=0\Leftrightarrow\left(x+1\right)^2+2=0\)

  Vì  \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+2\ge2\) mà ta có  \(\left(x+1\right)^2+2=0\) nên k có giá trị của x 

Vậy tập nghiệm của phương trình là   \(S=\left\{-\frac{5}{2};\frac{1}{2}\right\}\)

14 tháng 2 2018

a) Ta có: \(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\left(1\right)\)

Với a = 4

Thay vào phương trình (t) ta được:

  \(\frac{x+2}{x+2}+\frac{x-2}{x-2}=2\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow x^2-4+x^2-4=2\left(x^2-4\right)\)

\(\Leftrightarrow2x^2=2x^2-8\)

\(\Leftrightarrow0x=-8\)

Vậy phương trình vô nghiệm

b) Nếu x = -1

\(\Rightarrow\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)

\(\Leftrightarrow\frac{-1+a}{1}+\frac{-3}{-1-a}=2\)

\(\Leftrightarrow\frac{\left(-1+a\right)\left(-1-a\right)}{-1-a}+\frac{-3}{-1-a}=\frac{2\left(-1-a\right)}{-1-a}\)

\(\Leftrightarrow1+a-a-a^2-3=-2-2a\)

\(\Leftrightarrow-a^2+2a=-2-1+3\)

\(\Leftrightarrow a\left(2-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\2-a=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

Vậy a = {0;2}

NĂM MỚI VUI VẺ

14 tháng 2 2018

\(a,\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)

\(\frac{x+2+2}{x+2}+\frac{x-4+2}{x-4}=2\)

=> \(1+\frac{2}{x+2}+1+\frac{2}{x-4}=2\)

=>\(2\left(\frac{x-4+x+2}{\left(x+2\right)\left(x-4\right)}\right)=0\)

=> x=1 (t/m \(x\ne-2\) và \(x\ne4\))

19 tháng 2 2021

\(3\left(x-2\right)+4=5x-2\left(x-1\right)\\ \Leftrightarrow3x-6+4=5x-2x+2\\ \Leftrightarrow0x=4\left(vôlý\right)\)

Vậy pt vô nghiệm

 

\(2\left(x-2\right)-3\left(1-2x\right)=5\\ \Leftrightarrow2x-4-3+6x=5\\ \Leftrightarrow8x=12\\ \Leftrightarrow x=\dfrac{3}{2}\)

=>x^4+4x^2+9-4x^3-6x^2+12x<x^4-4x^3-2x^2+15x-3

=>-2x^2+12x+9<-2x^2+15x-3

=>-3x<-12

=>x>4