Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4x-12=12-8x
\(\Leftrightarrow\)4x+8x=12+12
\(\Leftrightarrow12x=24\)
\(\Leftrightarrow x=2\)
vậy pt có nghiệm x=2
b,\(\left|2020-x\right|+9x=2019\)(với x < 2020)
\(\Leftrightarrow\)\(\)2020-x+9x=2019(vì ĐK :x<2020)
\(\Leftrightarrow8x=-1\)
\(\Leftrightarrow x=-\frac{1}{8}\)(tm)
vậy pt có nghiệm x=\(-\frac{1}{8}\)
=>\(\left(\dfrac{x+1}{2021}+1\right)+\left(\dfrac{x+2}{2020}+1\right)+\left(\dfrac{x+3}{2019}+1\right)+\left(\dfrac{x+2028}{2}-3\right)=0\)
=>x+2022=0
=>x=-2022
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
<=> \(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
<=> \(\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
<=> \(\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
<=> x + 2015 = 0 ( vì \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x = - 2015
Vậy x = -2015.
Giải phương trình :
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
\(\Rightarrow\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Mà \(\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)>0\)
\(\Rightarrow x+2015=0\)
\(\Rightarrow x=-2015\)
\(\frac{x}{2017}+\frac{x-1}{2017}=\frac{x-2}{2019}-1\)
\(\Leftrightarrow\frac{2x-1}{2017}=\frac{x-2021}{2019}\)
\(\Leftrightarrow4038x-2019=2017x-4076357\)
\(\Leftrightarrow2021x=4074338\)
\(\Leftrightarrow x=\frac{4074338}{2021}\)(nếu sai thì ib vs mik nha)
Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)
\(\frac{x}{x^2+9x+2019}=\frac{x^2+10x+2019}{x^2+8x+2019}\)
Ta thấy \(0\)không thỏa mãn phương trình trên.
Với \(x\ne0\)phương trình tương đương với:
\(\frac{1}{x+9+\frac{2019}{x}}=\frac{x+10+\frac{2019}{x}}{x+8+\frac{2019}{x}}\)
\(\Leftrightarrow\frac{1}{t+9}=\frac{t+10}{t+8}\)(\(t=x+\frac{2019}{x}\))
\(\Rightarrow\left(t+10\right)\left(t+9\right)=t+8\)
\(\Leftrightarrow t^2+18t+82=0\)
\(\Leftrightarrow\left(t+9\right)^2+1=0\)(vô nghiệm)
Vậy phương trình đã cho vô nghiệm.