Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. E= |5x - 7| -3x=1 với x ≥7/5
=> |5x - 7| =1 + 3x
=> 5x - 7 = 1 + 3x
=> 5x - 3x = 1+7
=> 2x = 8
=> x = 4
P/S: Vì ở đê bài cho lak với x ≥7/5 nên chỉ có 1 TH như zậy......
a) Ta có: (2x2 - 5x + 3)(x2 - 4x + 3) = 0
=> \(\orbr{\begin{cases}2x^2-5x+3=0\\x^2-4x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x^2-2x-3x+3=0\\x^2-3x-x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x\left(x-1\right)-3\left(x-1\right)=0\\x\left(x-3\right)-\left(x-3\right)=0\end{cases}}\)
=> \(\orbr{\begin{cases}\left(2x-3\right)\left(x-1\right)=0\\\left(x-1\right)\left(x-3\right)=0\end{cases}}\)
=> x = 3/2 hoặc x = 1
hoặc : x = 1 hoặc x = 3
=> Tập hợp A = {1; 3/2; 3}
b) Ta có: (x2 - 10x + 21)(x3 - x) = 0
=> (x2 - 7x - 3x + 21)x(x2 - 1) = 0
=> [x(x - 7) - 3(x - 7)x(x2 - 1) = 0
=> (x - 3)(x - 7)x(x - 1)(x+ 1) = 0
=> x - 3 = 0 hoặc x - 7 = 0 hoặc x = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
=> x = 3 hoặc x = 7 hoặc x = 0 hoặc x = 1 hoặc x = -1
=> Tập hợp B = {-1; 0; 1; 3; 7}
mày điên à đây là mini world à đây không phải toán lớp 1 con ngu
Bài 42 , Có \(m=\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\)
\(\Rightarrow m^3=4+\sqrt{80}-\sqrt{80}+4-3m\sqrt[3]{\left(4+\sqrt{80}\right)\left(\sqrt{80-4}\right)}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{80-16}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{64}\)
\(\Leftrightarrow m^3=8-12m\)
\(\Leftrightarrow m^3+12m-8=0\)
Vì vậy m là nghiệm của pt \(x^3+12x-8=0\)
Bài 44, c, \(D=\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
\(\Rightarrow D^3=2+10\sqrt{\frac{1}{27}}+2-10\sqrt{\frac{1}{27}}+3D\sqrt[3]{\left(2+10\sqrt{\frac{1}{27}}\right)\left(2-10\sqrt{\frac{1}{27}}\right)}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{4-\frac{100}{27}}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{\frac{8}{27}}\)
\(\Leftrightarrow D^3=4+2D\)
\(\Leftrightarrow D^3-2D-4=0\)
\(\Leftrightarrow D^3-4D+2D-4=0\)
\(\Leftrightarrow D\left(D^2-4\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow D\left(D-2\right)\left(D+2\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[D\left(D+2\right)+2\right]=0\)
\(\Leftrightarrow\left(D-2\right)\left(D^2+2D+2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[\left(D+1\right)^2+1\right]=0\)
Vì [....] > 0 nên D - 2 = 0 <=> D = 2
Ý d làm tương tự nhá
7,
\(\Leftrightarrow x=\sqrt{x+2}\left(\frac{\sqrt{x}}{1+\sqrt{1-\sqrt{x}}}\right)^2\)
\(\Leftrightarrow x=\frac{\sqrt{x+2}.x}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}\Leftrightarrow\frac{\sqrt{x+2}}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}=1\)
đến đây tự làm
7 đề như tớ
8. (x-1)^2 +\(x\sqrt{x-\frac{1}{x}}\)
9. \(\sqrt{1+x}+\sqrt{3-3x}=\sqrt{4x^2+1}\)
Đặt \(\sqrt{4x^2+5x-1}=a;2\sqrt{x^2-x-1}=b\left(a\ge0,b\ge0\right)\Rightarrow a^2-b^2=9x+3\)
Ta thụ được hệ phương trình: \(\hept{\begin{cases}a^2-b^2=9x+3\\a-b=9x+3\end{cases}\Rightarrow a^2-b^2=a-b\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a+b=1\end{cases}}}\)
Xét 2 trường hợp xảy ra:
TH1: \(a=b\Leftrightarrow9x+3=0\Leftrightarrow x=\frac{-1}{3}\left(lo\text{ại}\right)\)
TH2: Kết hợp \(\hept{\begin{cases}a+b=1\\a-b=9x+3\end{cases}\Rightarrow2a=9x+4\Leftrightarrow\hept{\begin{cases}x\ge\frac{-4}{9}\\4\left(4x^2+5x-1\right)=81x^2+72x+16\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-4}{9}\\65x^2+52x+20=0\end{cases}}\)(*)
Hệ điều kiện (*) vô nghiệ do phương trình \(65x^2+52x+20=0\)vô nghiệm
Vậy hệ phương trình đã cho vô nghiệm.
đk: \(\orbr{\begin{cases}x\ge\frac{1+\sqrt{5}}{2}\\x\le\frac{-5-\sqrt{41}}{8}\end{cases}}\)
Đặt \(\hept{\begin{cases}\sqrt{4x^2+5x-1}=a\\\sqrt{x^2-x-1}=b\end{cases}}\Leftrightarrow\hept{\begin{cases}4x^2+5x-1=a^2\\4\left(x^2-x-1\right)=4b^2\end{cases}}\)
\(\Rightarrow a^2-4b^2=9x+3\)
Mà \(a-2b=9x+3\)
=> \(a^2-4b^2=a-2b\)
<=> \(\left(a-2b\right)\left(a+2b\right)-\left(a-2b\right)=0\)
<=> \(\left(a-2b\right)\left(a+2b-1\right)=0\)
<=> \(\orbr{\begin{cases}a-2b=0\\a+2b-1=0\end{cases}}\)
Nếu: \(a-2b=0\)
\(\Leftrightarrow9x+3=0\)
\(\Leftrightarrow9x=-3\)
\(\Rightarrow x=-\frac{1}{3}\left(tm\right)\)
Nếu: \(a+2b-1=0\)
\(\Rightarrow a+2b=1\) , mà \(a-2b=9x+3\)
=> \(2a=9x+4\)
<=> \(2\sqrt{4x^2+5x-1}=9x+4\)
<=> \(4\left(4x^2+5x-1\right)=81x^2+72x+16\)
<=> \(65x^2+52x+20=0\)
<=> \(65\left(x^2+\frac{4}{5}x+\frac{4}{25}\right)+\frac{48}{5}=0\)
\(\Leftrightarrow65\left(x+\frac{2}{5}\right)^2=-\frac{48}{5}\) (vô lý)
Vậy \(x=-\frac{1}{3}\)
Theo quan điểm cá nhân là vậy._.