Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{1}{2}\)
\(\Leftrightarrow2-\left(2sin\dfrac{x}{2}cos\dfrac{x}{2}\right)^2=1\)
\(\Leftrightarrow1-sin^2x=0\)
\(\Leftrightarrow cos^2x=0\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
b.
\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\dfrac{7}{16}\)
\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=\dfrac{7}{16}\)
\(\Leftrightarrow16-12.sin^22x=7\)
\(\Leftrightarrow3-4sin^22x=0\)
\(\Leftrightarrow3-2\left(1-cos4x\right)=0\)
\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)
\(\Leftrightarrow4x=\pm\dfrac{2\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)
ĐKXĐ: \(x\ne\frac{k\pi}{2}\)
\(\frac{4sin^2x.cos^2x-4sin^2x}{4sin^2x.cos^2x+4sin^2x}+1=2tan^2x\)
\(\Leftrightarrow\frac{4sin^2x\left(cos^2x-1\right)}{4sin^2x\left(cos^2x+1\right)}+1=\frac{2sin^2x}{cos^2x}\)
\(\Leftrightarrow\frac{cos^2x}{cos^2x+1}=\frac{1-cos^2x}{cos^2x}\)
Đặt \(cos^2x=t\Rightarrow0< t< 1\)
\(\Rightarrow\frac{t}{t+1}=\frac{1-t}{t}\Leftrightarrow t^2=1-t^2\Leftrightarrow t^2=\frac{1}{2}\)
\(\Leftrightarrow t=\frac{\sqrt{2}}{2}\Leftrightarrow cos^2x=\frac{\sqrt{2}}{2}\)
b.
ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)
\(\sqrt{2}\left(sinx+cosx\right)=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}\)
\(\Leftrightarrow\sqrt{2}\left(sinx+cosx\right)=\dfrac{1}{sinx.cosx}\)
Đặt \(sinx+cosx=t\Rightarrow\left|t\right|\le\sqrt{2}\)
\(sinx.cosx=\dfrac{t^2-1}{2}\)
Pt trở thành:
\(\sqrt{2}t=\dfrac{2}{t^2-1}\Rightarrow t^3-t-\sqrt{2}=0\)
\(\Leftrightarrow\left(t-\sqrt{2}\right)\left(t^2+\sqrt{2}t+1\right)=0\)
\(\Leftrightarrow t=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=1\)
\(\Leftrightarrow x+\dfrac{\pi}{4}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k2\pi\)
a.
\(\Leftrightarrow sin^22x+cos^22x+\sqrt{3}sin4x+1+cos4x=0\)
\(\Leftrightarrow cos4x+\sqrt{3}sin4x=-2\)
\(\Leftrightarrow\dfrac{1}{2}cos4x+\dfrac{\sqrt{3}}{2}sin4x=-1\)
\(\Leftrightarrow cos\left(4x-\dfrac{\pi}{3}\right)=-1\)
\(\Leftrightarrow4x-\dfrac{\pi}{3}=\pi+k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\)
ĐKXĐ: ...
\(\Leftrightarrow tan^2x+cot^2x=2\left(cos^4x+sin^4x+2sin^2x.cos^2x\right)\)
\(\Leftrightarrow tan^2x+cot^2x=2\left(sin^2x+cos^2x\right)^2\)
\(\Leftrightarrow tan^2x+cot^2x=2\)
\(\Leftrightarrow\left(tanx-cotx\right)^2=0\)
\(\Leftrightarrow tanx=cotx=tan\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow x=\frac{\pi}{2}-x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
ĐKXĐ: \(x\ne\frac{k\pi}{2}\)
\(\Leftrightarrow\left(tanx+cotx\right)^2=\frac{4+sin4x}{sin^22x}+2\)
\(\Leftrightarrow\left(\frac{sin^2x+cos^2x}{\frac{1}{2}sin2x}\right)^2=\frac{4+sin4x+2sin^22x}{sin^22x}\)
\(\Leftrightarrow\frac{4}{sin^22x}=\frac{4+sin4x+2sin^22x}{sin^22x}\)
\(\Leftrightarrow2sin^22x+sin4x=0\)
\(\Leftrightarrow1-cos4x+sin4x=0\)
\(\Leftrightarrow\sqrt{2}cos\left(4x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow cos\left(4x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\4x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\left(l\right)\\x=-\frac{\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)