K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

(đkxđ: x>0)

Theo BĐT Cauchy ta có

\(\sqrt{\frac{x^2+x+1}{x}}+\sqrt{\frac{x}{x^2+x+1}}\ge2\sqrt[4]{1}=2\)

Mà VP=7/4 <2=> MT

Vậy PT vô nghiệm

7 tháng 7 2018

a)

\(\sqrt{1-x}\) xác định với \(x\le1,\sqrt{x-2}\) xác định với \(x\ge2\)

Không có giá trị nào của x nghiệm đúng phương trình.

Do đó phương trình vô nghiệm.

7 tháng 7 2018

b) ĐKXĐ \(x\le3\)

\(\sqrt{3-x}+x=\sqrt{3-x}+1\)<=> x = 1.

Tậm nghiệm S = {1}

4 tháng 8 2020

+ bắt bẻ : đkxđ x ≥ 0 vì có \(\sqrt{x}\)

+ giải thích : \(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}=\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+3}+\sqrt{x+2}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}=\frac{\sqrt{x+3}-\sqrt{x+2}}{\sqrt{x+3}^2-\sqrt{x+2}^2}=\frac{\sqrt{x+3}-\sqrt{x+2}}{x+3-x-2}=\frac{\sqrt{x+3}-\sqrt{x+2}}{1}=\sqrt{x+3}-\sqrt{x+2}\)

tương tự vs mấy cái còn lại !!

~ bn làm vậy ai hiểu cho nỗi !! ~

Ahihi sorry ạ :v Quên không nhìn cái cuối có căn x....

6 tháng 10 2020

Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))

\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)

Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)

\(=2015+1=2016\)

Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)

Đến đây xét tiếp các TH nhé, ez rồi:))

6 tháng 10 2020

chẳng biết đúng ko,mới lớp 5

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)

\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)

\(x-\sqrt{6x}=2-\frac{2015}{4033}\)

\(x-\sqrt{6x}=\frac{6051}{4033}\)

17 tháng 8 2020

mình nghĩ sửa đề bài là  \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\) 

6 tháng 4 2019

Cái này là toán lớp 9 chứ.

a)
ĐKXĐ : \(x\ne\pm4\)

\(A=\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{\sqrt{x}+2}{x-4}\right):\left(\frac{\left(\sqrt{x}+2\right)^2}{x-4}-\frac{\left(\sqrt{x}-2\right)^2}{x-4}-\frac{2\sqrt{x}}{x-4}\right)\)

\(=\left(\frac{x-\sqrt{x}+7+\sqrt{x}+2}{x-4}\right):\left(\frac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-2\sqrt{x}}{x-4}\right)\)

\(=\frac{x+9}{x-4}\cdot\frac{x-4}{6\sqrt{x}}=\frac{x+9}{6\sqrt{x}}\)

b)

Ta có

\(x+9-6\sqrt{x}=\left(\sqrt{x}-3\right)^2\ge0\)
\(\Rightarrow x+9\ge6\sqrt{x}\)

\(\Rightarrow\frac{x+9}{6\sqrt{x}}\ge1\)

\(\Leftrightarrow A\ge1\)

\(\Leftrightarrow\frac{1}{A}\le1\)

\(\Rightarrow A\ge\frac{1}{A}\)