Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$
PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)
\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
2.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$
$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}=0$
$\Leftrightarrow x=0$
Thử lại thấy thỏa mãn
Vậy $x=0$
Đặt \(a=\sqrt{x-2015};b=\sqrt{y-2016};c=\sqrt{z-2017}\left(a,b,c>0\right)\)
Khi đó phương trình trở thành:
\(\dfrac{a-1}{a^2}+\dfrac{b-1}{b^2}+\dfrac{c-1}{c^2}=\dfrac{3}{4}\\ \Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{a}+\dfrac{1}{a^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{b}+\dfrac{1}{b^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{c}+\dfrac{1}{c^2}\right)=0\\ \Leftrightarrow\left(\dfrac{1}{2}-\dfrac{1}{a}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)^2=0\\ \Leftrightarrow a=b=c=2\\ \Leftrightarrow x=2019;y=2020;z=2021\)
Tick plz
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}=.\)
\(\frac{2-1}{1+\sqrt{2}}+\frac{3-2}{\sqrt{2}+\sqrt{3}}+\frac{4-3}{\sqrt{3}+\sqrt{4}}+...+\frac{2016-2015}{\sqrt{2015}+\sqrt{2016}}=.\)
\(\frac{\left(\sqrt{2}\right)^2-1}{1+\sqrt{2}}+\frac{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}{\sqrt{2}+\sqrt{3}}+\frac{\left(\sqrt{4}\right)^2-\left(\sqrt{3}\right)^2}{\sqrt{3}+\sqrt{4}}+...+\frac{\left(\sqrt{2016}\right)^2-\left(\sqrt{2015}\right)^2}{\sqrt{2015}+\sqrt{2016}}=.\)
\(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{1+\sqrt{2}}+\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}+\frac{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}{\sqrt{3}+\sqrt{4}}+...=.\)
\(=-1+\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2016}-\sqrt{2015}\)
\(=\sqrt{2016}-1\). đpcm
\(\frac{3}{2}\sqrt{4x-8}-9\sqrt{\frac{x-2}{81}}=6\)
đkxđ x>=2,x>0
\(\frac{3}{2}\sqrt{4\left(x-2\right)}-9\sqrt{\frac{x-2}{81}}=6\)
đặt t=x-2
\(\frac{3}{2}\sqrt{4t}-9\sqrt{\frac{t}{81}}=6\)
\(\frac{3}{2}.2\sqrt{t}-9\frac{\sqrt{t}}{9}=6\)
\(3\sqrt{t}-\sqrt{t}=6\)
\(2\sqrt{t}=6\)
\(\sqrt{t}=3=>t=9\)
thế t vào x-2 ta được
x-2=9<=> x=11 (thỏa)
S={11}
\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(\Rightarrow x^3=5+2\sqrt{13}+5-2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}.x\)
\(=10+3x\sqrt[3]{25-52}\)
\(=10+3x\sqrt[3]{-27}\)
\(=10-9x\)
\(\Rightarrow x^3+9x-10=0\)
\(\Leftrightarrow x^3-x+10x-10=0\)
\(\Leftrightarrow x\left(x^2-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+10\right)=0\)
Vì \(x^2+x+10=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}>0\forall x\)
=> x - 1 = 0
=> x = 1
Thay vào A = 12015 - 12016 = 0
Vậy A = 0
Lời giải:
Để cho gọn đặt \(\sqrt[3]{x+2016}=a\). PT trở thành:
\(\sqrt[3]{a^3-1}+a+\sqrt[3]{a^3+1}=0\)
\(\Leftrightarrow (\sqrt[3]{a^3-1}+1)+a+(\sqrt[3]{a^3+1}-1)=0\)
\(\Leftrightarrow \frac{a^3}{\sqrt[3]{(a^3-1)^2}-\sqrt[3]{a^3-1}+1}+a+\frac{a^3}{\sqrt[3]{(a^3+1)^2}+\sqrt[3]{a^3+1}+1}=0\)
\(\Leftrightarrow a( \frac{a^2}{\sqrt[3]{(a^3-1)^2}-\sqrt[3]{a^3-1}+1}+1+\frac{a^2}{\sqrt[3]{(a^3+1)^2}+\sqrt[3]{a^3+1}+1})=0\)
Ta thấy:
\(\sqrt[3]{(a^3-1)^2}-\sqrt[3]{a^3-1}+1=(\sqrt[3]{a^3-1}-\frac{1}{2})^2+\frac{3}{4}>0\)
\(\Rightarrow \frac{a^2}{\sqrt[3]{(a^3-1)^2}-\sqrt[3]{a^3-1}+1}\geq 0\)
Tương tự: \(\frac{a^2}{\sqrt[3]{(a^3+1)^2}+\sqrt[3]{a^3+1}+1}\geq 0\)
Do đó biểu thức " trong ngoặc " lớn hơn $0$
\(\Rightarrow a=0\)
\(\Rightarrow \sqrt[3]{x+2016}=0\Rightarrow x=-2016\)