K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

Pt \(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{4}=-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{4}=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\),\(k\in Z\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{24}+k\pi\\x=\dfrac{19\pi}{24}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy...
Hôm qua họ bảo toi ra lấy CCCD nma toi chưa đi, nay toi đi họ lại đang họp, liệu mai toi đi có bị ăn chửi ko, mn cho ý kiến đi :<

30 tháng 6 2021

\(2sin\left(2x-\dfrac{\pi}{4}\right)+\sqrt{3}=0\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=sin\left(-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{4}=-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{4}=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{\pi}{12}+k2\pi\\2x=\dfrac{19\pi}{12}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{24}+k\pi\\x=\dfrac{19\pi}{24}+k\pi\end{matrix}\right.\)

15 tháng 6 2021

Đk:\(cosx\ne\dfrac{1}{2}\) \(\Rightarrow cosx\ne\pm\dfrac{\pi}{3}+k2\pi\);\(k\in Z\)

Pt \(\Leftrightarrow\dfrac{\left(2-\sqrt{3}\right)cosx-\left[1-cos\left(x-\dfrac{\pi}{2}\right)\right]}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx-1+cos\left(\dfrac{\pi}{2}-x\right)=2cosx-1\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow2sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\) (\(k\in Z\)) kết hợp với đk \(\Rightarrow x=\dfrac{2\pi}{3}+k2\pi\)(\(k\in Z\))

NV
15 tháng 6 2021

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow x\ne\pm\dfrac{\pi}{3}+k2\pi\)

\(\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)-1=2cosx-1\)

\(\Leftrightarrow sinx-\sqrt{3}cosx=0\)

\(\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=-\dfrac{2\pi}{3}+k2\pi\)

NV
25 tháng 7 2021

1.

\(\Leftrightarrow cos\left(2x+\dfrac{4\pi}{3}\right)=0\)

\(\Leftrightarrow2x+\dfrac{4\pi}{3}=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow2x=-\dfrac{5\pi}{6}+k\pi\)

\(\Leftrightarrow x=-\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\)

b.

\(\Leftrightarrow2+2cos\left(2x+\dfrac{\pi}{3}\right)-3=0\)

\(\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\2x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

c.

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{6}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=k\pi\end{matrix}\right.\)

27 tháng 7 2021

cho em hỏi làm sao mà từ đề ra được ạ

b) \(\Leftrightarrow2+2cos\left(2x+\dfrac{\pi}{3}\right)-3=0\)

c)\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

NV
20 tháng 12 2022

Đặt \(tan\left(x+\dfrac{\pi}{3}\right)=t\)

\(\Rightarrow t^2+\left(\sqrt{3}-1\right)t-\sqrt{3}=0\)

\(\Leftrightarrow t\left(t-1\right)+\sqrt{3}\left(t-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tan\left(x+\dfrac{\pi}{3}\right)=1\\tan\left(x+\dfrac{\pi}{3}\right)=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{4}+k\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k\pi\\x=-\dfrac{2\pi}{3}+k\pi\end{matrix}\right.\)

20 tháng 9 2021

\(cos\left(2x+\dfrac{\pi}{3}\right)+cos\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow2cos\dfrac{3x}{2}.cos\left(\dfrac{x}{2}+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\dfrac{3x}{2}=0\\cos\left(\dfrac{x}{2}+\dfrac{\pi}{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\\\dfrac{x}{2}+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)