Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
a: =>(x-1)(3x-4)>0
=>x>4/3 hoặc x<1
b: =>x^3-3x^2-10x^2+30x+12x-36>0
=>(x-3)(x^2-10x+12)>0
Th1: x-3>0và x^2-10x+12>0
=>x>5+căn 13
TH2: x-3<0 và x^2-10x+12<0
=>x<3 và 5-căn 13<x<5+căn 13
=>3<x<5+căn 13
\(ĐKXĐ:\left\{{}\begin{matrix}x\ne-1\\x\ne4\end{matrix}\right.\)
\(\dfrac{14x}{x+1}< \dfrac{9x-30}{x-4}\\ \Leftrightarrow14x\left(x-4\right)< \left(9x-30\right)\left(x+1\right)\\ \Leftrightarrow14x^2-56x< 9x^2-21x-30\\ \Leftrightarrow5x^2-35x+30< 0\\ \Leftrightarrow1< x< 6\)
Lập phương 2 vế phương trình ta có :
\(5x-1+13x+1+3\sqrt[3]{\left(15x-1\right)\left(13x-1\right)}\left(\sqrt[3]{15x-1}+\sqrt[3]{13x+1}\right)=64x\)
Mà :
\(\sqrt[3]{15x-1}+\sqrt[3]{13x+1}=4\sqrt[3]{x}\) nên :
\(15x-1+13x+1+3\sqrt[3]{\left(15x-1\right)\left(13x+1\right)}.4\sqrt[3]{x}=64\)
\(\Leftrightarrow12\sqrt[3]{x\left(15x-1\right)\left(13x+1\right)}=36x\)
\(\Leftrightarrow\sqrt[3]{x\left(15x-1\right)\left(13x+1\right)}=3x\)
\(\Leftrightarrow x\left(15x-1\right)\left(13x+1\right)=27x^3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\\left(15x-1\right)\left(13x+1\right)=27x^2\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\168x^2+2x-1=0\end{array}\right.\)
\(\Leftrightarrow x\in\left\{0;\frac{1}{14};-\frac{1}{12}\right\}\)
Thử lại ta thấy \(x=0;x=\frac{1}{14};x=-\frac{1}{12}\) đều là nghiệm của phương trình đã cho.