K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

a( ax + 1) = x( a + 2) + 2

⇔ a2x + a - ax- 2x = 2 - a

⇔ x( a2 - a - 2 ) = 2 - a

⇔ x( a2 + a - 2a - 2) = 2 - a

⇔ x[ a( a + 1) -2( a + 1) ] = 2 - a

⇔ x( a + 1)( a - 2) = 2 - a ( *)

+) Với : a # 2 ; a # - 1 , ta có :

( * ) ⇔ x = \(\dfrac{-1}{a+1}\)

+) Với : a = 2 , ta có :

( * ) ⇔ 0x= 0 ( Luôn đúng )

+) Với : a = - 1 , ta có :

( * ) ⇔0x = 3 ( Vô lý )

KL.....

25 tháng 5 2018

<=>(a^2-a-2)x=2-a

[(a-1/2)^2-(3/2)^2]x=2-a

<=>(a+1)(a-2)x=2-a

a=2 ; =>moi x$R

a=-1 ; vo nghiem

a≠{-1;2}: x=-1/(a+1)

27 tháng 3 2020

a, Ta có phương trình

(m-1)x=m^2 -1 => (m-1)x-m^2+1 =0 (1)

Vậy phương trình (1) là phương trình bậc nhất (=) (m-1) khác 0.

(=) m khác 1

b, Ta có phương trình (1)

(m-1)x - m2 +1 = 0 => mx -x -m2 +1 = 0

+) Nếu m=1 => phương trình (1) có dạng 0x = 0

+) Nếu m khác 1 => Ptrinh (1) có nghiệm là x=(1-m2)/(m-1)

Vậy với m=1 ptinh có S=R

với m khác 1 ptrinh có S={(1-m2)/(m-1)}

Chúc bạn học tốt

14 tháng 2 2018

a) Ta có: \(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\left(1\right)\)

Với a = 4

Thay vào phương trình (t) ta được:

  \(\frac{x+2}{x+2}+\frac{x-2}{x-2}=2\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow x^2-4+x^2-4=2\left(x^2-4\right)\)

\(\Leftrightarrow2x^2=2x^2-8\)

\(\Leftrightarrow0x=-8\)

Vậy phương trình vô nghiệm

b) Nếu x = -1

\(\Rightarrow\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)

\(\Leftrightarrow\frac{-1+a}{1}+\frac{-3}{-1-a}=2\)

\(\Leftrightarrow\frac{\left(-1+a\right)\left(-1-a\right)}{-1-a}+\frac{-3}{-1-a}=\frac{2\left(-1-a\right)}{-1-a}\)

\(\Leftrightarrow1+a-a-a^2-3=-2-2a\)

\(\Leftrightarrow-a^2+2a=-2-1+3\)

\(\Leftrightarrow a\left(2-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\2-a=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

Vậy a = {0;2}

NĂM MỚI VUI VẺ

14 tháng 2 2018

\(a,\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)

\(\frac{x+2+2}{x+2}+\frac{x-4+2}{x-4}=2\)

=> \(1+\frac{2}{x+2}+1+\frac{2}{x-4}=2\)

=>\(2\left(\frac{x-4+x+2}{\left(x+2\right)\left(x-4\right)}\right)=0\)

=> x=1 (t/m \(x\ne-2\) và \(x\ne4\))

16 tháng 2 2020

b) \(\frac{10x+1}{7}=\frac{7x-2}{4}\)

<=> \(\frac{4\left(10x+1\right)}{28}=\frac{7\left(7x-2\right)}{28}\)

<=> 40x + 4 = 49x - 14

<=> 40x - 49x = -14 - 4

<=> -9x = -18

<=> x = 2

Vậy S = {2}

c) \(\frac{x-5}{5}-2=\frac{1+19x}{6}\)

<=> \(\frac{6\left(x-5\right)-60}{30}=\frac{5\left(1+19x\right)}{30}\)

<=> 6x - 30 - 60 = 5 + 95x

<=> 6x - 95x = 5 + 90

<=> -89x = 95

<=> x = -95/89

Vậy S = {-95/89}

19 tháng 4 2017

ĐK: a \(\ne\) 0

BPT tương đương

x +\(\frac{x}{a}\)\(\frac{1}{a}\)\(\frac{x}{a}\)\(\frac{1}{a}\)+ (a - 2)x < 0

<=> x - \(\frac{2}{a}\)+ (a - 2) x < 0

<=> (a - 1)x < \(\frac{2}{a}\)

TH1: a = 1: BPT luôn đúng với mọi x

TH2: a > 1: BPT tương đương:

x < \(\frac{2}{a\left(a-1\right)}\)

TH3: a < 1 (a\(\ne\)0) BPT tương đương:

x > \(\frac{2}{a\left(a-1\right)}\)

13 tháng 3 2018

I do not know what to do.

15 tháng 5 2015

điều kiện xác định khác 0

 

19 tháng 2 2021

a)(3x-1)(4x-8)=0

⇔3x-1=0 hoặc 4x-8=0

1.3x-1=0⇔3x=1⇔x=1/3

2.4x-8=0⇔4x=8⇔x=2

phương trình có 2 nghiệm:x=1/3 và x=2

b)(x-2)(1-3x)=0

⇔x-2=0 hoặc 1-3x=0

1.x-2=0⇔x=2

2.1-3x=0⇔-3x=1⇔x=-1/3

phương trình có 2 nghiệm:x=2 và x=-1/3

c)(x-3)(x+4)-(x-3)(2x-1)=0

⇔(x+4)(2x-1)=0

⇔x+4=0 hoặc 2x-1=0

1.x+4=0⇔x=-4

2.2x-1=0⇔2x=1⇔x=1/2

phương trình có hai nghiệm:x=-4 và x=1/2

d)(x+1)(x+2)=2x(x+2)

⇔(x+1)(x+2)-2x(x+2)=0

⇔2x(x+1)=0

⇔2x=0 hoặc x+1=0

1.2x=0⇔x=0

2.x+1=0⇔x=-1

phương trình có 2 nghiệm:x=0 và x=-1