K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

mai đăng lại bài này nhé t làm cho h đi ngủ

6 tháng 12 2016

11 tháng 7 2021

a) \(\left|sinx-cosx\right|+\left|sinx+cosx\right|=2\)

\(\Leftrightarrow\left(sinx-cosx\right)^2+2\left|sinx-cosx\right|\left|sinx+cosx\right|+\left(cosx+sinx\right)^2=4\)

\(\Leftrightarrow2\left(sin^2x+cos^2x\right)+2\left|\left(sinx-cosx\right)\left(sinx+cosx\right)\right|=4\)

\(\Leftrightarrow\left|sin^2x-cos^2x\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-cos^2x=1\\sin^2x-cos^2x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-cos^2x=sin^2x+cos^2x\\sin^2x-cos^2x=-\left(sin^2x+cos^2x\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=0\\sin^2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\)\(\Rightarrow cosx.sinx=0\Rightarrow sin2x=0\)

\(\Rightarrow x=\dfrac{k\pi}{2},k\in Z\)

Vậy...

b) ĐK:\(x\ne\dfrac{k\pi}{2};k\in Z\)

Pt \(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cosx}{sinx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{cosx.sinx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\dfrac{\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx\right)}{sinx.cosx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\left(1\right)\\\dfrac{sinx-\sqrt{3}cosx}{sinx.cosx}=4\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow tanx=-\sqrt{3}\Leftrightarrow x=-\dfrac{\pi}{3}+k\pi,k\in Z\)

Từ (2)\(\Leftrightarrow sinx-\sqrt{3}cosx=4sinx.cosx\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=2sinx.cosx\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin2x\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy \(\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)\(\left(k\in Z\right)\)

c) ĐK: \(x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\left(k\in Z\right)\)

Pt \(\Leftrightarrow\left(\sqrt{2}sinx-1\right)^2+\left(\sqrt{3}tan2x-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}sinx-1=0\\\sqrt{3}tan2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}sinx=\dfrac{1}{\sqrt{2}}\\tan2x=\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\\x=\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)

Vậy pt vô nghiệm

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

a1.

$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$

$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên

a2. ĐKXĐ:...............

$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$

$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$

$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.

 

 

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

a3. ĐKXĐ:........

$\cot (\frac{\pi}{4}-2x)-\tan x=0$

$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$

$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.

a4. ĐKXĐ:.....

$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$

$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$

$=\cot (x+\frac{4\pi}{9})$

$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên

$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên. 

8 tháng 9 2016

b)đề là \(tan\left(x-15^0\right)=\frac{\sqrt{3}}{3}\)

Vì \(\frac{\sqrt{3}}{3}=tan30^0\) nên

\(\Leftrightarrow tan\left(x-15^0\right)=tan30^0\)

\(\Leftrightarrow x-15^0=30^0+k180^0\)

\(\Leftrightarrow x=45^0+k180^0\left(k\in Z\right)\)

8 tháng 9 2016

Đk:\(sin3x\ne0\) và \(cos\frac{2\pi}{5}\ne0\)

\(\Leftrightarrow\frac{cos3x}{sin3x}-\frac{sin\frac{2\pi}{5}}{cos\frac{2\pi}{5}}=0\)

\(\Leftrightarrow cos3x\cdot cos\frac{2\pi}{5}-sin\frac{2\pi}{5}\cdot sin3x=0\)

\(\Leftrightarrow cos\left(3x+\frac{2\pi}{5}\right)=0\)

\(\Leftrightarrow3x+\frac{2\pi}{5}=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{30}+\frac{k\pi}{3}\)