K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0 
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0 
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7 
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên). 
ta có pt: 
(x + u)^2 + u^2 + u = 7 
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**) 
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4 
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4. 
*nếu (x + u)^2 = 0 
(**) => (u + 1/2)^2 = 7 + 1 / 4 
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên 
*nếu (x + u)^2 = 4 
(**) => (u + 1/2)^2 = 3 + 1 / 4 
=> u^2 + u - 3 = 0 không có nghiệm nguyên. 
*nếu (x + u)^2 = 1 
(**) => (u + 1/2)^2 = 6 + 1 / 4 
=> u^2 + u - 6 = 0 
=> u = - 3 hoặc u = 2 
+ với u = -3 => y = - 3 - 2 = - 5 
có: (x - 3)^2 = 1 
=> x - 3 = -1 hoặc x - 3 = 1 
=> x = 2 hoặc x = 4 
+ với u = 2 => y = 0 
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1 
=> x = - 3 hoặc x = -1 
tóm lại pt có các nghiệm nguyên (x, y) là: 
(2, - 5), (4, - 5), (- 3, 0), (-1, 0) 

Thông cảm nha tại tớ làm chi tiết nên bị dài

x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0 
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0 
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7 
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên). 
ta có pt: 
(x + u)^2 + u^2 + u = 7 
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**) 
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4 
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4. 
*nếu (x + u)^2 = 0 
(**) => (u + 1/2)^2 = 7 + 1 / 4 
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên 
*nếu (x + u)^2 = 4 
(**) => (u + 1/2)^2 = 3 + 1 / 4 
=> u^2 + u - 3 = 0 không có nghiệm nguyên. 
*nếu (x + u)^2 = 1 
(**) => (u + 1/2)^2 = 6 + 1 / 4 
=> u^2 + u - 6 = 0 
=> u = - 3 hoặc u = 2 
+ với u = -3 => y = - 3 - 2 = - 5 
có: (x - 3)^2 = 1 
=> x - 3 = -1 hoặc x - 3 = 1 
=> x = 2 hoặc x = 4 
+ với u = 2 => y = 0 
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1 
=> x = - 3 hoặc x = -1 
tóm lại pt có các nghiệm nguyên (x, y) là: 
(2, - 5), (4, - 5), (- 3, 0), (-1, 0) 

NV
26 tháng 2 2023

a.

\(x^2+4y^2+4xy=0\)

\(\Leftrightarrow\left(x+2y\right)^2=0\)

\(\Leftrightarrow x+2y=0\)

\(\Leftrightarrow x=-2y\)

Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)

b.

\(2y^4-9y^3+2y^2-9y=0\)

\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)

\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)

c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được

8 tháng 9 2015

2x² + 2y² + 2xy -2x + 2y + 2 = 0

<=>x2+2xy+y2+x2-2x+1+y2+2y+1=0

<=>(x+y)2+(x-1)2+(y+1)2=0

<=>x-1=0 và y-1=0

<=>x=1 và y=-1

 

9 tháng 3 2023

Là có giải ko mẹ🥰🙏

31 tháng 10 2018

a) \(2x+13y=156\) (1)

.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)

Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)

Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)

b)Biến đổi phương trình thành: \(2xy-4x=7-y\)

\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )

Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên

hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!

31 tháng 10 2018

c) \(3xy+x-y=1\)

\(\Leftrightarrow9xy+3x-3y=3\)

\(\Leftrightarrow9xy+3x-3y-1=2\)

\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)

\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)