Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x+y\right)\left(x+2y\right)+3\left(x+y\right)=15\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y+3\right)=15\)
15 có hơi nhiều cặp ước nên bạn tự lập bảng và giải nốt nhé :)
PT đã cho ghép nhóm vào được :
\(\left(x^2+3xy+\frac{9}{4}y^2\right)+2\left(x+\frac{3}{2}y\right).\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\left(y^2-2y+1\right)=17\)
\(\Leftrightarrow\left(x+\frac{3}{2}y+\frac{3}{2}\right)^2-\frac{1}{4}\left(y-1\right)^2=17\)
\(\Leftrightarrow\left(x+\frac{3}{2}y+\frac{3}{2}-\frac{1}{2}y+\frac{1}{2}\right)\left(x+\frac{3}{2}y+\frac{3}{2}+\frac{1}{2}y-\frac{1}{2}\right)=17\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+2y+1\right)=17\)
Sau đấy lập bảng xét ước
Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).
Vậy pt vô nghiệm nguyên.
2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).
a: \(\Leftrightarrow\dfrac{y+5}{y\left(y-5\right)}-\dfrac{y-5}{2y\left(y+5\right)}=\dfrac{y+25}{2\left(y-5\right)\left(y+5\right)}\)
\(\Leftrightarrow2\left(y+5\right)^2-\left(y-5\right)^2=y^2+25y\)
=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)
=>30y+25=25y
=>5y=-25
=>y=-5(loại)
b: \(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)
=>x^2+x+x^2-3x-4x=0
=>2x^2-6x=0
=>2x(x-3)=0
=>x=0(nhận) hoặc x=3(loại)
c: =>x^2-9-6(2x+7)=-13(x+3)
=>x^2-9-12x-42+13x+39=0
=>x^2+x-6=0
=>(x+3)(x-2)=0
=>x=2(nhận) hoặc x=-3(loại)
\(\Leftrightarrow6x+15y+9xy=24\)
\(\Leftrightarrow3x\left(2+3y\right)+5\left(2+3y\right)=34\)
\(\Leftrightarrow\left(3x+5\right)\left(3y+2\right)=34=1.34=2.17=17.2=34.1=\left(-1\right)\left(-34\right)=\left(-2\right)\left(-17\right)=\left(-17\right)\left(-2\right)=\left(-34\right)\left(-1\right)\)
Đến đây bạn tự giải.
\(\Leftrightarrow6x+15y+9xy=24\)
\(\Leftrightarrow9xy+6x+15y+10=24+10\)
\(\Leftrightarrow3x\left(3y+2\right)+5\left(3y+2\right)=34\)
\(\Leftrightarrow\left(3x+5\right)\left(3y+2\right)=34\)
Vì \(x,y\in Z\) và \(3y+2\) chia 3 dư 2nên ta có bảng kết quả :
3x+5 | 17 | 2 | -1 | -34 |
3y+2 | 2 | 17 | -34 | -1 |
x | 4 | -1 | -2 | -13 |
y | 0 | 5 | -12 |
-1 |
Vậy có 4 cặp số nguyên (x,y) thỏa mãn yêu cầu bài toán là:
(4;0) ; (-1;5) ; (-2;-12) ; (-13;-1).
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
x2 + 2y2 + 3xy + 3x + 5y = 15
Û (x +y +z )(x + 2y +1)
đúng không???
GPT thì cần tìm x,ynữa