Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)2xy+4y-x=5\)
\(\Leftrightarrow\left(2xy+4y\right)-x=3+2\)
\(\Leftrightarrow2y\left(x+2\right)-x-2=3\)
\(\Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\)
\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét từng trường hợp :
- \(\hept{\begin{cases}x+2=1\\2y-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
- \(\hept{\begin{cases}x+2=3\\2y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
- \(\hept{\begin{cases}x+2=-1\\2y-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)
- \(\hept{\begin{cases}x+2=-3\\2y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=0\end{cases}}}\)
Vậy
\(2x+y=xy-3\)
\(\Leftrightarrow xy-2x-y=3\)
\(\Leftrightarrow\left(xy-2x\right)-y=-2+5\)
\(\Leftrightarrow x\left(y-2\right)-y+2=5\)
\(\Leftrightarrow x\left(y-2\right)-\left(y-2\right)=5\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)=5\)
\(\Rightarrow\left(y-2\right);\left(x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp như câu trên và kết luận
Hoàng Trần Trà My
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}=>\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}=>x\left(1-2y\right)=5\cdot8=40\)8 = 40
Ta có :
1- 2y là ước của lẻ 40 .
=> 1- 2y thuộc { 0,1 ; 1 ; - 5 ; 5 )
+﴿1 ‐2y = ‐1 =>y = 1
=> x = ‐40 + 1 ‐ 2y = 1
=> y = 0
=> x = -4
+﴿ 1 ‐ 2y = ‐5
=> y = 3
=> x = ‐8
+﴿ 1 ‐2y = 5
=> y = ‐2
=> x = 8
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
\(\Rightarrow160+8xy=4x\)
=> 160=4x-8xy
=> 160=x.(4-8y)
bạn lập bảng ra nhá :)
\(a,2xy+4y-x=5\\ \Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\\ \Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\\ Vìx,y\in Z\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2=1\\2y-1=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+2=-1\\2y-1=-3\end{matrix}\right.\end{matrix}\right.và\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2=3\\2y-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x+2=-3\\2y-1=-1\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\end{matrix}\right.và\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\end{matrix}\right.\\ Vậy...........\)
\(b,2x+y=xy-3\\ \Leftrightarrow2x+y-xy+3=0\\ \Leftrightarrow x\left(2-y\right)-\left(2-y\right)+5=0\\ \Leftrightarrow\left(2-y\right)\left(x-1\right)=-5\\ \Leftrightarrow\left(y-2\right)\left(x-1\right)=5\\ Rồibntựxétnhé!!!!\)
bổ sung đề là tìm x,y nguyên dương
b/\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\).Vai trò của x,y là bình đẳng nên có thể giả sử: \(x\ge y\)
Hiển nhiên ta có: \(\frac{1}{y}< \frac{1}{3}\Leftrightarrow y\ge4\) (vì x,y nguyên dương)
và\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}=\frac{2}{6}\le\frac{2}{y}\Rightarrow y\le6\)
Ta có: \(4\le y\le6\)
Đến đây bí,alibaba!
Ta có: \(\left(-2\right)x=5y\) \(\rightarrow\) \(\dfrac{x}{5}=\dfrac{y}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\dfrac{x}{5}=\dfrac{y}{-2}=\dfrac{x+y}{5+\left(-2\right)}=\dfrac{30}{3}=10\)
\(\Rightarrow x=5\times10=50\)
\(y=\left(-2\right)\times10=\left(-20\right)\)