K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

\(x^2y^2-x^2-7y^2=4xy\)

\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)

\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)

\(\Rightarrow x^2-3=n^2\)

\(\Leftrightarrow\left(x-n\right)\left(x+n\right)=3\)

19 tháng 5 2018

\(x^2y^2-x^2-7y^2=4xy\)

\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)

\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)

\(\Leftrightarrow x^2-3=y^2\)

\(\Leftrightarrow x^2-y^2=3\Leftrightarrow\left(x+y\right)\left(x-y\right)=3\)

Từ đó suy ra phương trình có nghiệm duy nhất: \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)(loại vì nếu thử lại VT = -7 , mà VP = 4xy=4.2.1 = 8 . VT không bằng VP nên phương trình vô nghiệm

NV
7 tháng 9 2021

\(\Leftrightarrow4x^2-4xy+y^2=16-3y^2\)

\(\Leftrightarrow16-3y^2=\left(2x-y\right)^2\ge0\)

\(\Rightarrow y^2\le\dfrac{16}{3}\)

\(\Rightarrow y^2=\left\{1;4\right\}\)

\(\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)

- Với \(y=1\Rightarrow4x^2-4x+4=16\Leftrightarrow x^2-x-3=0\) (ko có x nguyên thỏa mãn)

- Với \(y=2\Rightarrow4x^2-8x=0\Rightarrow x=2\)

Vậy \(\left(x;y\right)=\left(2;2\right)\)

7 tháng 9 2021

cô chấm bài các bạn đi cô

27 tháng 1 2021

Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)

Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)

=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)

Mà (x+2y)(3x+4y)=96 chẵn 

=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)

Từ (1) và (2) => 3x+4y, x+2y cùng chẵn

Ta có bảng sau: 

3x+4y482244166128
x+2y248424616812
x44-9416-444-26-4-16
y-2171-634121614

Vậy ...

8 tháng 2 2021

x=4; y=1