Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+xy+y^2=2x+y\)
đk có nghiệm của Pt:
\(x^2+x\left(y-2\right)+y^2-y=0\left(1\right)\)
để tồn tại x thì Pt 1 phải có nghiệm
\(\left(y-2\right)^2-4\left(y^2-y\right)\)
\(-3y^2+4\left(vl\right)\)
Vậy Pt kia k có nghiệm nguyên.
đúng là thanh niên trong đội tuyển toán yêu dấu của cô chủ nhiệm
phương trình đã cho có thể đưa về dạng:
(x+1)(y+1)=10 (1)
từ (1) ta suy ra (x+1) là ước của 10 hay (x+1) thuộc {+-1;+-2;+-5;+-10}
từ đó ta tìm đc các nghiệm phương trình là:
(1;4);(4;1);(-3;-6);(-6;-3);(0;9);(9;0);(-2;-11);(-11;-2)
\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{2}\)
=>\(\frac{x+y}{xy}-\frac{1}{2}=0\)
\(\Rightarrow\frac{-\left(x-2\right)y-2x}{2xy}=0\)
=>(x-2)y-2x=0
=>x-2=0( vì x-2=0 thì nhân y-2x ms =0 )
=>x=2
=>y-2=0
=>y=2
vậy x=y=2
\(2xy-4x-y=1\Rightarrow2xy-4x-y+2=3\Rightarrow2x\left(y-2\right)-\left(y-2\right)=3\Rightarrow\left(2x-1\right)\left(y-2\right)=3\)
Vì x,y là nghiệm nguyên nên ta xét các trường hợp :
1. \(\hept{\begin{cases}2x-1=1\\y-2=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}}\)
2. \(\hept{\begin{cases}2x-1=3\\y-2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)
3. \(\hept{\begin{cases}2x-1=-1\\y-2=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)
4. \(\hept{\begin{cases}2x-1=-3\\y-2=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy nghiệm của phương trình là : \(\left(x;y\right)=\left(-1;1\right);\left(0;-1\right);\left(1;5\right);\left(2;3\right)\)
2xy-4x-y=1
x(2y-4)-y=1
2x(2y-4)-2y=2
2x(2y-4)-2y+4=6
2x(2y-4)-(2y-4)=6
(2y-4)(2x-1)=6
Đến đây, ta thấy 2x-1 là ước lẻ của 6 =>2x-1 E { 1;3 }
Với 2x-1=1 thì 2y-4=6 =>x=1, y=5
Với 2x-1=3 thì 2y-4=2 =>x=2, y=3
Em mới học lớp 6 nên chỉ làm theo cách lớp 6 thôi. Còn nghiệm nguyên thì em chưa học
Đây là toán lớp 6 hả ? Mk học lớp 6 rồi mà chẳng biết làm
Ta có: nhân hai vế vs 2:
2x2+2y2+2xy=4x+2y
=> (x2-4x+4)+(x2+2xy+y2)+(y2-2y+1)=5
=> (x-2)2+(x+y)2+(y-1)2=5=02+12+22
Thử các trường hợp rồi giải ra nhé! Chúc bạn học tốt!