K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

Dịt cụ mày

18 tháng 1 2017

mày bị ngáo ak. đã xấu còn bị điên. đã bị điên cò học dốt

6 tháng 11 2019

a. \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)

<=> \(x^3+x^2+x+1=4y^2+4y+1\)

<=> \(\left(x+1\right)\left(x^2+1\right)=\left(2y+1\right)^2\)là một số chính phương lẻ

=> \(x+1;x^2+1\) là 2 số lẻ (1)

Chứng minh: \(\left(x+1;x^2+1\right)=1\)

Đặt: \(\left(x+1;x^2+1\right)=d\)

=> \(\hept{\begin{cases}x-1⋮d\\x^2+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x^2+1⋮d\end{cases}}}\)

=> \(\left(x^2+1\right)-\left(x^2-1\right)⋮d\)

=> \(2⋮d\)(2)

Từ (1) => d lẻ ( 3)

(2); (3) => d =1

Vậy  \(\left(x+1;x^2+1\right)=1\)

Có  \(\left(x+1\right)\left(x^2+1\right)\) là số chính phương

Từ  2 điều trên => \(\left(x+1\right),\left(x^2+1\right)\) là 2 số chính phương

Mặt khác \(x^2\) là số chính phương

Do đó: x = 0

Khi đó: \(4y\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)

Vậy phương trình có nghiệm ( x; y) là ( 0; 0) hoặc (0; -1)

8 tháng 10 2017

ta có : \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)

<=>\(x^3+x^2+x+1=4y^2+4y+1\)

<=>\(\left(x^2+1\right)\left(x+1\right)=\left(2y+1\right)^2\)

ta thấy : \(x^2+1\) và \(x+1\) cùng  tính  chẵn lẻ.Mà \(\left(2y+1\right)^2\) là bình phương của 1 số lẻ nên \(x^2+1\) và \(x+1\) cùng lẻ => x chẵn

mặt khác: tích \(\left(x^2+1\right)\left(x+1\right)\) là 1 số chính phương lẻ =>\(x^2+1=x+1\)

                     <=>\(x^2=x\) <=> x(x-1)=0 \(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

mà x là số chẵn nên x=0 => 4y(y+1)=0 \(\Rightarrow\orbr{\begin{cases}y=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}}\)

vậy nghiệm của phương trình là : (x;y)={ (0;0) ; (0;-1)}

29 tháng 1 2019

Tại sao lại suy ra x2+1=x+1. Mình không hiểu chỗ đó giải thích cho mình với

25 tháng 5 2017


Nếu x=0, y =1, -1 
-Nếu x khác 0, 
- Nếu x lẻ, cộng 2 vế với 1 
x^3 + x^2 + x + 1 = 4y^2 + 4y + 1 
<=> (x^2 + 1)(x + 1) = (2y + 1)^2 
x lẻ 
x^2 + 1 chẵn 
x + 1 chẵn 
=> VT chẵn mà VP luôn lẻ => loại TH x lẻ 

Xét x chẵn  =>....tui thấy trên mạng nó lm tek này,,nhưng mà TH chẵn nó lm sai,,,

Vậy pt có 2 cặp nghiệm nguyên (0,1) và (0,-1)

25 tháng 5 2017

mik ko pic

28 tháng 2 2016

Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b 

a+b=x

ab=1

Rồi tính lần lượt a+bbằng ẩn x hết 

và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra