Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-2.3.x+9\right)+\left(y^2+2.5.y+25\right)=58\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2=58\)
vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\\\left(y+5\right)^2\ge0\end{cases}\text{và là hai số chính phương}}\)
mà 58 chẵn => \(\hept{\begin{cases}\left(x-3\right)^2\\\left(y+5\right)^2\end{cases}\text{cùng tính chẵn lẻ}}\)
tự c/m nha, bn xét SCP chẵn, lẻ là đc(ko c/m đc ib)
\(\text{mà chỉ có 49, 9 t/m điều kiện }\Rightarrow...\)
a)VP lẻ => VT lẻ =>x2-y2=2k+1 (k\(\in\)Z) (số lẻ)
\(\Rightarrow10y+9=\left(2k+1\right)^2\Rightarrow y=\frac{2\left(k+2\right)\left(k-1\right)}{5}\in Z^+\)
\(\Rightarrow\orbr{\begin{cases}\left(k+2\right)⋮5\Rightarrow k=5t-2\Rightarrow y=2t\left(5t-3\right)\left(1\right)\\\left(k-1\right)⋮5\Rightarrow k=5t+1\Rightarrow y=2t\left(5t+3\right)\left(2\right)\end{cases}}\left(t\in Z^+\right)\)
- Xét \(\left(1\right)\Rightarrow x^2=\left(10t^2-6t\right)^2+10t-3\)
Mà \(\hept{\begin{cases}\left(10t^2-6t\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t+1\right)^2\left(\text{khi}\text{ t }\ge1\right)\\\left(10t^2-6t-1\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t\right)^2\left(\text{khi t}\le-1\right)\\\left(10t^2-6t\right)^2+10t-3=-3< 0\left(\text{khi t}=0\right)\end{cases}}\)
Suy ra pt vô nghiệm
- Xét (2)\(\Rightarrow x^2=\left(10t^2+6t\right)^2+10t+3\)
Mà \(\left(10t^2+6t\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t+1\right)^2\left(\text{khi t}\ge1\right)\) (*)
\(\left(10t^2+6t-1\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t\right)^2\left(\text{khi t}< -1\right)\)(*)
\(\left(10t^2+6t\right)^2+10t+3=3^2\left(\text{khi t}=-1\right)\)(*)
\(1^2< \left(10t^2+6t\right)^2+10t+3=3< 2^2\left(\text{khi t}=0\right)\)(*)
Suy ra \(t=-1;y=4;x=\pm3\) (thỏa mãn)
Vậy....
P/s:Ngoặc nhọn 4 dòng có dấu (*) vào
Xin lỗi bạn mình chưa học lớp 8
Trông đề bài khó quá
Mình nghiệp dư lắm
Ak mk bị nhầm tí sorry nha giải tiếp đoạn đó nha
(2x+1)^2+(y-3)^2 = 34 = 5^2 + 9^2
<=> (2x+1)^2 = 5^2 ; (y-3)^2 = 9^2 hoặc (2x+1)^2 = 9^2 ; (y-3)^2 = 5^2
<=> x=2 hoặc x=-3 ; y=12 hoặc y=-6
hoặc :
x=4 ; x=-5 hoặc y=8 ; y=-2
Vậy ............
Tk mk nha
pt <=> (4x^2+4x+1)+(y^2-6y+9) = 14
<=>(2x+1)^2 + (y-3)^2 = 14
<=> (2x+1)^2 = 14 - (y-3)^2 < = 14
Mà 2x+1 lẻ nên (2x+1)^2 thuộc {1;9}
+, Với (2x+1)^2 = 1 => (y-3)^2 = 13 => ko tồn tại y thuộc Z
+, Với (2x+1)^2 = 9 => (y-3)^2 = 5 => ko tồn tại y thuộc Z
Vậy ko tồn tại cặp số x,y thuộc Z t/m pt
Tk mk nha
phương trình ban đầu ⇔(4x−1)y=182−6x
Vì x nguyên nên x≠14⇒y=182−6x4x−1⇒2y=364−12x4x−1=−3+3614x−1
y nhận giá trị nguyên => 2y cũng nhận giá trị nguyên => 2y nguyên <=> (4x-1) là các ước của 361
Lập bảng xét ước
Rồi thử lại
Done ^^
ta có đc :
x2-4-y=y2-4
<=> x2=y2+y
<=> x2=y(y+1)
vì VP là tích của 2 số nguyên liên tiếp và VT là bình phương một số và x và y nguyên => x2=y(y+1)=0
<=> y=0 hoặc y=-1
vậy ta có cặp no(x;y):(0;0) ; (0;-1)
\(x^2-6x+y^2+10y=24\)
\(\Leftrightarrow x^2-6x+9+y^2+10x+25=58\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2=58\)
\(\Leftrightarrow\left(x-3\right)^2\le58\Leftrightarrow\left(x-3\right)^2\in\left\{0;1;4;9;16;25;36;49\right\}\)
Dễ nhận thấy chỉ có tổng của 49 và: 9; 9 và 49 thỏa mãn (vì các số trên là số chính phương
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}\left(x-3\right)^2=49\Leftrightarrow x-3=7\Leftrightarrow x=10\\\left(y+5\right)^2=9\Leftrightarrow y+5=3\Leftrightarrow y=-2\end{cases}}\\\end{cases}}\)<=> (x-3)^2+(y+5)^2=49+9=9+49
+) (x-3)^2+(y+5)^2=49+9
=> x-3=7=>x=10 và: y+5=3=>y=-2
+) (x-3)^2+(y+5)^2=9+49
=> (x-3)=3=>x=6 và y+5=7=>y=2
Vậy có 2 cặp (x,y)={(6;2);(10;-2)}
thỏa mãn điều kiện