K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

ĐK: \(x\ge0\)

\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)

7 tháng 8 2017

ai giải hộ mk ý a vs ý c

22 tháng 3 2016

bn chờ chút nhé mình đg bận

22 tháng 3 2016

Thằng thắng nó giải tùm  lum đấy coi chừng bị lừa đểu

21 tháng 10 2020

2.

Nhân hai vế của phương trình với 6xy:
                   6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
      x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37 
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử x⩾y⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
               {−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số:  (43;7),(7;43)
 

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

27 tháng 5 2016

nhân 2 vế với 3xy =>3y+3x=xy+3=>\(\left\{y-3\right\}\left\{x-3\right\}=12\)

=>y-3;x-3 thuộc ước 12={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}

27 tháng 5 2016

Nhân cả hai vế với 3xy (Nhận được vì x , y nguyên dương) ta có: 

\(3y+3x=xy+3\Leftrightarrow3y-xy+3x-3=0\)

\(\Leftrightarrow y\left(3-x\right)+3x-9+6=0\Leftrightarrow y\left(3-x\right)-3\left(3-x\right)=-6\)

\(\Leftrightarrow\left(y-3\right)\left(x-3\right)=6\)

Từ đó ta tìm được x ,y.

Chúc em học tốt :)

22 tháng 9 2017

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

26 tháng 6 2019

Có: \(ĐKXĐ:\hept{\begin{cases}x+y-3\ne0\\x-y+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3-y\\x\ne y-1\end{cases}}}\)

Đặt: \(\hept{\begin{cases}x+y-3=a\\x-y+1=b\end{cases}}\)(1)

\(HPT\Leftrightarrow\hept{\begin{cases}\frac{5}{a}-\frac{2}{b}=8\\\frac{3}{a}+\frac{1}{b}=1,5\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{5}{a}-\frac{2}{b}=8\\\frac{6}{a}+\frac{2}{b}=3\end{cases}}\Leftrightarrow\frac{11}{a}=11\Leftrightarrow a=1}\)

Bn giải b xong rồi giải tiếp HPT (1)

29 tháng 11 2017

cậu cứ nhân 5 vào phương trình (2)

cộng 2 phương trình lại cậu sẽ ra được x+y-1=2

thế cái vừa tìm được vào 1 trong 2 phương trình thi sẽ ra thêm một phương trình 2x-y=-13

giải hệ rồi tìm được x và y

21 tháng 1 2017

Đặt ẩn phụ rồi !

Phân tích như này cho b hiểu:

\(\Leftrightarrow\hept{\begin{cases}3.\frac{1}{x}+5.\frac{1}{y}=\frac{3}{2}\\5.\frac{1}{x}-2.\frac{1}{y}=\frac{1}{3}\end{cases}}\)

Đặt: a = 1/x , b = 1/y

\(\Leftrightarrow\hept{\begin{cases}3a+5b=\frac{3}{2}\\5a-2b=\frac{1}{3}\end{cases}}\)(nhân 2 cho cái trên, 5 cho cái dưới)

\(\Leftrightarrow\hept{\begin{cases}6a+10b=3\\25a-10b=\frac{5}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}31a=\frac{14}{3}\\6a+10b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{14}{93}\\6.\frac{14}{93}+10b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{14}{93}\\b=\frac{13}{62}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{14}{93}\\\frac{1}{y}=\frac{13}{62}\end{cases}}\)(nhân chéo chia ngang)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{93}{14}\\y=\frac{62}{13}\end{cases}}\)

Kết luận..

21 tháng 1 2017

Đặt : \(\frac{1}{x}=a;\frac{1}{y}=b\)

Hệ phương trình trở thành :

\(\hept{\begin{cases}3a+5b=\frac{3}{2}\\5a-2b=\frac{1}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}15a+25b=\frac{15}{2}\\15a-6b=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}31b=\frac{13}{2}\\15a-6b=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{13}{62}\\15a-6.\frac{13}{62}=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}b=\frac{13}{62}\\15a-\frac{39}{31}=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{13}{62}\\a=\frac{14}{93}\end{cases}}}\)

Với \(a=\frac{14}{93}\Rightarrow\frac{1}{x}=\frac{14}{63}\Rightarrow x=\frac{9}{2}\)

Với \(b=\frac{13}{62}\Rightarrow\frac{1}{y}=\frac{13}{62}\Rightarrow y=\frac{62}{13}\)