Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(cosx\ne\frac{1}{2}\Rightarrow x\ne\pm\frac{\pi}{3}+k2\pi\)
\(cos2x+\sqrt{3}\left(1+sinx\right)=\frac{2cosx-1+4sinx.cosx-2sinx}{2cosx-1}\)
\(\Leftrightarrow cos2x+\sqrt{3}\left(1+sinx\right)=\frac{2cosx-1+2sinx\left(2cosx-1\right)}{2cosx-1}\)
\(\Leftrightarrow cos2x+\sqrt{3}+\sqrt{3}sinx=2sinx+1\)
\(\Leftrightarrow1-2sin^2x+\sqrt{3}\left(1+sinx\right)=2sinx+1\)
\(\Leftrightarrow2sin^2x+2sinx-\sqrt{3}\left(1+sinx\right)=0\)
\(\Leftrightarrow\left(2sinx-\sqrt{3}\right)\left(1+sinx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{3}+k2\pi\left(ktm\right)\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(x^2-2x+3=t\left(t\ge0\right)\)
\(pt\Leftrightarrow\frac{1}{t-1}+\frac{1}{t}=\frac{9}{2\left(t+1\right)}\)
\(\Leftrightarrow\frac{2t\left(t+1\right)}{2t\left(t^2-1\right)}+\frac{2\left(t^2-1\right)}{2t\left(t^2-1\right)}-\frac{9t\left(t-1\right)}{2t\left(t^2-1\right)}=0\)
\(\Leftrightarrow-5t^2+11t-2=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2\end{cases}}\)
\(-\frac{\pi}{2}< x< 0\Rightarrow\left\{{}\begin{matrix}sinx< 0\\cosx>0\end{matrix}\right.\)
\(cos2x=2cos^2x-1\Rightarrow cosx=\sqrt{\frac{1+cos2x}{2}}=\frac{1}{3}\)
\(sinx=-\sqrt{1-cos^2x}=-\frac{2\sqrt{2}}{3}\)
\(M=\frac{1}{2}\left[sin2x+sin\frac{\pi}{2}\right]=sinx.cosx+\frac{1}{2}=\frac{9-4\sqrt{2}}{18}\)
Kết quả đúng rồi đó bạn
\(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21.22}+\frac{1}{22.23}+...+\frac{1}{29.30}\right)280\)
<=> \(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+...+\frac{1}{29}-\frac{1}{30}\right).280\)
<=> \(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21}-\frac{1}{30}\right)280\)
<=> \(12-10,34.\frac{3}{13}\left(x-1\right)=4\)
<=> \(8=10,34.\frac{3}{13}.\left(x-1\right)\)
<=> \(x-1=\frac{5200}{1551}\)
<=> \(x=\frac{6751}{1551}\)
Ta có:
\(\frac{1}{21.22}+\frac{1}{22.23}+...+\frac{1}{29.30}=\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+...+\frac{1}{29}-\frac{1}{30}=\frac{1}{21}-\frac{1}{30}\)
phương trình đã cho trở thành
\(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21}-\frac{1}{30}\right).280\)
\(\Leftrightarrow x-1=\frac{\left(\frac{1}{21}-\frac{1}{30}\right).280-12}{-10,34.\frac{3}{13}}\Leftrightarrow x=\frac{\left(\frac{1}{21}-\frac{1}{30}\right).280-12}{-10,34.\frac{3}{13}}+1\)
\(\Leftrightarrow x=\frac{6751}{1551}\)
\(\left\{{}\begin{matrix}x-\frac{3}{4}y=0\\\frac{1}{2}\left(x+3\right)\left(y-3\right)=\frac{1}{2}xy+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{4}y\\\frac{1}{2}\cdot\left(\frac{3}{4}y+3\right)\left(y-3\right)=\frac{1}{2}\cdot\frac{3}{4}y\cdot y+12\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{3y^2}{8}+\frac{3y}{8}-\frac{9}{2}=\frac{3y^2}{8}+12\)
\(\Leftrightarrow\frac{3y}{8}=\frac{33}{2}\)
\(\Leftrightarrow y=44\)
\(\Leftrightarrow x=\frac{3}{4}\cdot44=33\)
Vậy...
CHÚ Ý: ĐÂY KHÔNG PHẢI TOÁN 9 EM NHÉ!
pt <=> \(1-2sin^2x-sinx=0\Leftrightarrow\orbr{\begin{cases}sin=-1\\sin=\frac{1}{2}\end{cases}}\)
tới đây là pt dạng cơ bản chỉ áp dụng công thức em tự giải nốt
Bn ơi,trên đây ko cs lp 12 đăng tạm lp 9 nhé:)