K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

Với điều kiện x>0 ta có :

\(\Leftrightarrow\) \(\left(\log_2x-2\right)\left(\log_7x-1\right)=0\)

\(\Leftrightarrow\begin{cases}\log_2x-2=0\\\log_7x-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}\log_2x=2\\\log_7x=1\end{cases}\)

\(\Leftrightarrow\begin{cases}x=4\\x=7\end{cases}\)

Cùng thỏa mãn điều kiện x>0

Vậy phương trình có 2 nghiệm x=4; x=7

29 tháng 3 2016

Điều kiện x>0. Nhận thấy x=2 là nghiệm

- Nếu x>2 thì : \(\log_2x>\log_22=1;\log_5\left(2x+1\right)>\log_5\left(2.2x+1\right)=1\)

Suy ra phương trình vô nghiệm.

Tương tự khi 0<x<2

Đáp số x=2

30 tháng 3 2016

Đặt \(t=\log_2x\) ta có bất phương trình :

\(2t^3+5t^2+t-2\ge0\)

hay 

\(\left(t+2\right)\left(2t^2+t-1\right)\ge0\)

Bất phương trình này có nghiệm -2\(\le t\)\(\le-1\) hoặc \(t\ge\frac{1}{2}\)

Suy ra nghiệm của bất phương trình là :

\(\frac{1}{4}\le x\)\(\le\frac{1}{2}\) hoặc \(x\ge\sqrt{2}\)

 

30 tháng 3 2016

Với điều kiện x>0. lấy Logarit cơ số 2 hai vế ta có :

\(\log_2x.\log_2x<5\Leftrightarrow-\sqrt{5}<\log_2x<\sqrt{5}\)

Từ đó suy ra, nghiệm của bất phương trình là :

\(2^{-\sqrt{5}}\)<x<\(2^{\sqrt{5}}\)

29 tháng 3 2016

Điều kiện x>0. Nhận thấy x=2 là nghiệm. 

Nếu x>2 thì

\(\frac{x}{2}>\frac{x+2}{4}>1\)\(\frac{x+1}{3}>\frac{x+3}{5}>1\)

Suy ra 

\(\log_2\frac{x}{2}>\log_2\frac{x+2}{4}>\log_4\frac{x+2}{4}\)hay :\(\log_2x>\log_2\left(x+2\right)\)

\(\log_3\frac{x+1}{3}>\log_3\frac{x+3}{5}>\log_5\frac{x+3}{5}\) hay \(\log_3\left(x+1\right)>\log_5\left(x+3\right)\)

Suy ra vế trái < vế phải, phương trình vô nghiệm.

Đáp số x=2

NV
18 tháng 2 2022

ĐKXĐ: \(x;y>0\)

\(log_2x=-\dfrac{1}{3}log_2y\Rightarrow log_2x=log_2y^{-\dfrac{1}{3}}\)

\(\Rightarrow x=y^{-\dfrac{1}{3}}=\dfrac{1}{\sqrt[3]{y}}\Rightarrow y=\dfrac{1}{x^3}\)

Thế vào pt dưới: \(3^x+3^{\dfrac{1}{x^3}}=4\)

- Với \(x\ge1\Rightarrow\left\{{}\begin{matrix}3^x\ge3^1=3\\\dfrac{1}{x^3}>0\Rightarrow3^{\dfrac{1}{x^3}}>1\end{matrix}\right.\) \(\Rightarrow3^x+3^{\dfrac{1}{x^3}}>4\) pt vô nghiệm

- Với \(0< x< 1\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x^3}>1\Rightarrow3^{\dfrac{1}{x^3}}>3\\3^x>1\end{matrix}\right.\) \(\Rightarrow3^x+3^{\dfrac{1}{x^3}}>4\) pt vô nghiệm

Vậy hệ đã cho vô nghiệm

28 tháng 3 2016

d) Điều kiện x>0. Áp dụng công thức đổi cơ số, ta có :

\(\log_2x+\log_3x+\log_4x=\log_{20}x\)

\(\Leftrightarrow\log_2x+\frac{\log_2x}{\log_23}+\frac{\log_2x}{\log_24}=\frac{\log_2x}{\log_220}\)

\(\Leftrightarrow\log_2x\left(1+\frac{1}{\log_23}+\frac{1}{2}+\frac{1}{\log_220}\right)=0\)

\(\Leftrightarrow\log_2x\left(\frac{3}{2}+\log_22-\log_{20}2\right)=0\)

Ta có \(\frac{3}{2}+\log_22-\log_{20}2>\frac{3}{2}+0-1>0\)

Do đó, từ phương trình trên, ta phải có \(\log_2x=0\) hay \(x=2^0=1\)

Vậy nghiệm duy nhất của phương trình là \(x=1\)

28 tháng 3 2016

c) Điều kiện x>0, đưa về cùng cơ số 5, ta có :

\(\log_5x^3+3\log_{25}x+\log_{\sqrt{25}}\sqrt{x^3}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\log_{5^2}x+\log_{5^{\frac{3}{2}}}x^{\frac{3}{2}}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\frac{1}{2}\log_5x+\frac{3}{2}.\frac{2}{3}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\frac{11}{2}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\log_5x=1\)

\(\Leftrightarrow x=5^1=5\) thỏa mãn

Vậy phương trình chỉ có 1 nghiệ duy nhất \(x=5\)

NV
3 tháng 12 2018

Bạn ko phân biệt được "hoặc" và "và" trong toán học rồi

"Hoặc" là có thể cái này xảy ra, cái kia xảy ra đều được, nhưng "và" thì phải 2 thứ đồng thời xảy ra. Mà trên đời làm gì tồn tại số thực nào vừa lớn hơn 3 vừa nhỏ hơn 2 đâu bạn

Bạn có thể dễ dàng kiểm chứng kết quả bài toán bằng MODE-7 của casio mà :D

NV
3 tháng 12 2018

\(log_2x-log_2x.log_3x+log_3x-1>0\)

\(\Leftrightarrow log_2x\left(1-log_3x\right)-\left(1-log_3x\right)>0\)

\(\Leftrightarrow\left(log_2x-1\right)\left(1-log_3x\right)>0\)

\(\Rightarrow2< x< 3\)

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán