K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

Nếu đề là y+1 thì

\(\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\2+\dfrac{2}{x-2}-1-\dfrac{1}{y+1}=\dfrac{26}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=\dfrac{17}{5}\\2a-b=\dfrac{21}{5}\end{matrix}\right.\)

6 tháng 6 2017

\(\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\2+\dfrac{2}{x-1}-1-\dfrac{3}{y-1}=\dfrac{26}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x-2}+\dfrac{4}{y+1}=\dfrac{34}{5}\\\dfrac{6}{x-1}-\dfrac{9}{y-1}=\dfrac{63}{5}\end{matrix}\right.\)

\(\dfrac{4}{y+1}+\dfrac{9}{y-1}=-\dfrac{29}{5}=>y=....\)

Sửa đề: \(\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\\dfrac{2x-2}{x-2}+\dfrac{y+2}{y+1}=\dfrac{26}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\\dfrac{2x-4+2}{x-2}+\dfrac{y+1+1}{y+1}=\dfrac{26}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\\dfrac{2}{x-2}+\dfrac{1}{y+1}=\dfrac{11}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}=1\\\dfrac{1}{y+1}=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(3;4\right)\)

25 tháng 5 2022

\(\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\\dfrac{2x-2}{x-2}+\dfrac{y+1}{y-1}=\dfrac{26}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{y+1}=\dfrac{17}{5}-\dfrac{3}{x-2}\\\dfrac{2x-2}{x-2}+\dfrac{y-1+2}{y-1}=\dfrac{26}{5}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2}{y+1}=\dfrac{17}{5}-\dfrac{3}{x-2}\\\dfrac{2x-2}{x-2}+1+\dfrac{2}{y-1}=\dfrac{26}{5}\end{matrix}\right.\left\{{}\begin{matrix}\dfrac{2}{y+1}=.......\\\dfrac{2}{y-1}=\dfrac{21}{5}-\dfrac{2x-2}{x-2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{17}{5}-\dfrac{3}{x-2}=\dfrac{21}{5}-\dfrac{2x-2}{x-2}\)\(\Rightarrow\dfrac{4}{5}=\dfrac{2x-5}{x-2}\Rightarrow10x-25=4x-8\Rightarrow x=\dfrac{17}{6}\Rightarrow y=-11\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\\dfrac{2x-4+2}{x-2}+\dfrac{y+1+1}{y+1}=\dfrac{26}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\\dfrac{2}{x-2}+\dfrac{1}{y+1}=\dfrac{26}{5}-1-2=\dfrac{11}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\y+1=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-\dfrac{4}{5}\end{matrix}\right.\)

NV
28 tháng 1 2021

a.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)

NV
28 tháng 1 2021

b.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)

12 tháng 1 2019
https://i.imgur.com/NPx7OjZ.jpg
12 tháng 1 2019
https://i.imgur.com/cKHt1qr.jpg
16 tháng 2 2022

Đặt \(\left\{{}\begin{matrix}\dfrac{x}{x-1}=a\\\dfrac{1}{y+2}=b\end{matrix}\right.\)

\(\Rightarrow\)Ta có hệ mới: \(\left\{{}\begin{matrix}3a-2b=4\\2a+b=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2\cdot\left(3a-2b\right)=2\cdot4\\3\left(2a+b\right)=3\cdot5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6a-4b=8\left(1\right)\\6a+3b=15 \left(2\right)\end{matrix}\right.\)

Lấy (2)-(1) ta đc:

\(\Rightarrow7b=7\Rightarrow b=1\Rightarrow2a+1=5\Rightarrow a=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{x-1}=2\\\dfrac{1}{y+2}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(x-1\right)\\1=y+2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

16 tháng 2 2022

Với \(x\ne1;y\ne-2\)

hpt <=>\(\left\{{}\begin{matrix}\dfrac{3x}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{4x}{x-1}+\dfrac{2}{y+2}=10\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\dfrac{7x}{x-1}=14\\\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\dfrac{x}{x-1}=2\\2.2+\dfrac{1}{y+2}=5\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}2x-2=x\\\dfrac{1}{y+2}=1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=2\\y+2=1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

17 tháng 6 2021

Ai giúp mình với đi ạ
Mình cảm ơn nhiều.

17 tháng 6 2021

a) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)(Đk: \(x\ne-1;y\ne-1\))

Đặt \(\dfrac{x}{x+1}\)  là A

\(\dfrac{y}{y+1}\) là B 

Ta có HPT mới : \(\left\{{}\begin{matrix}2A+B=2\\A+3B=-1\end{matrix}\right.\)(1)

Giải HPT (1) ta được A=  \(\dfrac{7}{5}\) ; B=\(-\dfrac{4}{5}\)

+Với A=\(\dfrac{7}{5}\) ta có: 

\(\dfrac{x}{x+1}=\dfrac{7}{5}\)

<=>\(5x=7x+7\)

<=>-2x=7

<=> x=\(-\dfrac{7}{2}\)

+Với B = \(-\dfrac{4}{5}\) ta có:

\(\dfrac{y}{y+1}=-\dfrac{4}{5}\)

<=>5y=-4y-4

<=>9y=-4

<=>y=\(-\dfrac{4}{9}\)

Vậy HPT có nghiệm (x;y) = \(\left\{-\dfrac{7}{2};-\dfrac{4}{9}\right\}\)

 

25 tháng 12 2021

\(a,ĐK:x,y\ne2\)

Đặt \(\left\{{}\begin{matrix}x-2=a\\y-2=b\end{matrix}\right.\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{3}{a}+\dfrac{2}{b}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{a}+\dfrac{9}{b}=15\\\dfrac{6}{a}+\dfrac{4}{b}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{5}{b}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+3=5\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow x=y=3\left(tm\right)\)

\(b,ĐK:x\ge3;y\ge1\)

Sửa: \(\sqrt{x-3}-\sqrt{y-1}=4\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-3}\ge0\\b=\sqrt{y-1}\ge0\end{matrix}\right.\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}a-2b=2\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3=36\\y-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=39\\y=5\end{matrix}\right.\)

25 tháng 12 2021

bạn ơi, đề câu b thầy mình ra là vậy á