Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge1\)
\(pt\Leftrightarrow2\sqrt{\left(x-1\right)\left(x+2\right)}-\sqrt{x-1}-6\sqrt{x+2}+3=0\)
\(\Leftrightarrow\left(2\sqrt{x+2}-1\right)\left(\sqrt{x-1}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+2}=1\\\sqrt{x-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+2\right)=1\\x-1=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{4}\left(l\right)\\x=10\left(tm\right)\end{matrix}\right.\)
Vậy ...
Xét \(f\left(x;y;z\right)=\left(3x+4y+5z\right)^2-44\left(xy+yz+zx\right)\)
\(=\left(y+2z+3\right)^2-44yz-44\left(y+z\right)\left(1-y-z\right)\)
\(=45y^2+2y\left(24z-19\right)+48z^2-32z+9\)
\(\Delta_y'=\left(24z-9\right)^2-45\left(48z^2-32z+9\right)=-44\left(6z-1\right)^2\le0\)
\(\Rightarrow f\left(x;y;z\right)\ge0\)
\(\Leftrightarrow cos6x-cos8x+2\left(1-cos4x\right)^2+\sqrt{3}sin6x=4-4cos4x\)
\(\Leftrightarrow cos6x-cos8x+2\left(1+cos^24x-2cos4x\right)+\sqrt{3}sin6x=4-4cos4x\)
\(\Leftrightarrow cos6x-cos8x+cos8x+3-4cos4x+\sqrt{3}sin6x=4-4cos4x\)
\(\Leftrightarrow cos6x+\sqrt{3}sin6x=1\)
\(\Leftrightarrow cos\left(6x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow...\)
\(\begin{cases}3xy\left(1+\sqrt{9y^2+1}\right)=\frac{1}{\sqrt{x+1}-\sqrt{x}}\left(1\right)\\x^3\left(9y^2+1\right)+4\left(x^2+1\right)\sqrt{x}=10\left(2\right)\end{cases}\)
Điều kiện \(x\ge0\)
Nếu x=0, hệ phương trình không tồn tại
Vậy xét x>0
\(\Leftrightarrow3y+3y\sqrt{9y^2+1}=\frac{\sqrt{x+1}+\sqrt{x}}{x}\)
\(\Leftrightarrow3y+3y\sqrt{\left(3y\right)^2+1}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}\sqrt{\left(\frac{1}{\sqrt{x}}\right)^2+1}\) (3)
Từ (1) và x>0 ta có y>0. Xét hàm số \(f\left(t\right)=t+t.\sqrt{t^2+1},t>0\)
Ta có \(f'\left(t\right)=1+\sqrt{t^2+1}+\frac{t^2}{\sqrt{t^2+1}}>0\). Suy ra \(f\left(t\right)\) luôn đồng biến trên \(\left(0;+\infty\right)\)
Phương trình (3) \(\Leftrightarrow f\left(3y\right)=f\left(\frac{1}{\sqrt{x}}\right)\Leftrightarrow3y=\frac{1}{\sqrt{x}}\)
Thế vào phương trình (2) ta được : \(x^3+x^2+4\left(x^2+1\right)\sqrt{x}=10\)
Đặt \(g\left(x\right)=x^3+x^2+4\left(x^2+1\right)\sqrt{x}-10,x>0\)
Ta có \(g'\left(x\right)>0\) với \(x>0\) \(\Rightarrow g\left(x\right)\) là hàm số đồng biến trên khoảng (\(0;+\infty\))
Ta có g(1)=0
vậy phương trình g(x) = 0 có nghiệm duy nhất x = 1
Với x=1 => \(y=\frac{1}{3}\)
Vậy kết luận : Hệ có nghiệm duy nhất (\(1;\frac{1}{3}\))
a.
\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)
\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)
\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)
\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)
\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)
\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)
\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)
\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)
Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)
Giải bất phương trình: \(\left|x^2-\sqrt{x-3}\right|< \left|x^2-2\right|+\left|2-\sqrt{x-3}\right|\)
Lời giải:ĐK: $x>3$
Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$
Do đó:
$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$
Dấu "=" xảy ra khi:
$(x^2-2)(2-\sqrt{x-3})\geq 0$
$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)
$\Leftrightarrow x< 7$
Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là
$[7;+\infty)\cup (-\infty;3]$
Lời giải:ĐK: $x>3$
Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$
Do đó:
$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$
Dấu "=" xảy ra khi:
$(x^2-2)(2-\sqrt{x-3})\geq 0$
$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)
$\Leftrightarrow x< 7$
Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là
$[7;+\infty)\cup (-\infty;3]$
Ta có \(10+6\sqrt{3}=\left(\sqrt{3}+1\right)^3\)nên phương trình đã cho tương đương với :
\(\left(\sqrt{3}+1\right)^{6\sin x}=\left(\sqrt{3}+1\right)^{\frac{1}{2}\sin4x}\)
\(\Leftrightarrow6\sin x=2\sin x.\cos x.\cos2x\)
\(\Leftrightarrow\sin x\left(\cos x.\cos2x-3\right)=0\)
Do \(\cos x.\cos2x-3< 0\) nên phương trinh chỉ có nghiệm \(\sin x=0\Leftrightarrow x=k\pi,k\in Z\)