Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
Đặt \(\frac{10}{x}-\frac{x}{6}=a\Rightarrow a^2=\frac{100}{x^2}+\frac{x^2}{36}-\frac{10}{3}\Rightarrow\frac{100}{x^2}+\frac{x^2}{36}=a^2+\frac{10}{3}\)
\(\Rightarrow\frac{900}{x^2}+\frac{x^2}{4}=9a^2+30\)
Phương trình trở thành:
\(9a^2+30=2+48a\)
\(\Leftrightarrow9a^2-48a+28=0\Rightarrow\left[{}\begin{matrix}a=\frac{14}{3}\\a=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{10}{x}-\frac{x}{6}=\frac{14}{3}\\\frac{10}{x}-\frac{x}{6}=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{6}+\frac{14}{3}x-10=0\\\frac{x^2}{6}+\frac{2}{3}x-10=0\end{matrix}\right.\)
ĐKXĐ: ...
Đặt \(\frac{x}{3}-\frac{4}{x}=a\Rightarrow a^2=\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=a^2+\frac{8}{3}\)
\(a^2+\frac{8}{3}=\frac{10}{3}a\Leftrightarrow3a^2-10a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x}{3}-\frac{4}{x}=2\\\frac{x}{3}-\frac{4}{x}=\frac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-12=0\\x^2-4x-12=0\end{matrix}\right.\)
\(\frac{2}{x^2+1}+\frac{4}{x^2+3}+\frac{6}{x^2+5}=3+\frac{x^2-1}{x^2+6}\)
\(\Leftrightarrow\frac{x^2-1}{x^2+6}+1-\frac{2}{x^2+1}+1-\frac{4}{x^2+3}+1-\frac{6}{x^2+5}=0\)
\(\Leftrightarrow\frac{x^2-1}{x^2+6}+\frac{x^2-1}{x^2+1}+\frac{x^2-1}{x^2+3}+\frac{x^2-1}{x^2+5}=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)=0\)
\(\Rightarrow x=\pm1\)
Do \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\frac{1}{x^2+1}>0.\)
Tương tự \(\frac{1}{x^2+2};\frac{1}{x^2+3};\frac{1}{x^2}+4>0\)
=> Phương trình vô nghiệm
\(x=0\) không phải nghiệm
\(\frac{4}{x+1+\frac{3}{x}}+\frac{5}{x-5+\frac{3}{x}}=-\frac{3}{2}\)
Đặt \(x-5+\frac{3}{x}=a\)
\(\frac{4}{a+6}+\frac{5}{a}=-\frac{3}{2}\)
\(\Leftrightarrow8a+10\left(a+6\right)=-3a\left(a+6\right)\)
\(\Leftrightarrow3a^2+36a+60=0\Rightarrow\left[{}\begin{matrix}a=-2\\a=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-5+\frac{3}{x}=-2\\x-5+\frac{3}{x}=-10\end{matrix}\right.\) \(\Leftrightarrow...\)
Ta có :
\(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)
\(\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+5}{2008}+1\right)+\left(\frac{x+6}{2007}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+2013}{2012}+\frac{x+2013}{2011}+\frac{x+2013}{2010}=\frac{x+2013}{2009}+\frac{x+2013}{2008}+\frac{x+2013}{2007}\)
\(\Leftrightarrow\)\(\left(x+2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)\)
\(\Leftrightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}=\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(1\right)\)
Mà \(\frac{1}{2012}< \frac{1}{2009}\)\(;\)\(\frac{1}{2011}< \frac{1}{2008}\)\(;\)\(\frac{1}{2010}< \frac{1}{2007}\)
\(\Rightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra không có giá trị nào của \(x\)thoả mãn đề bài
Vậy không có gía trị nào của \(x\)hay \(x\in\left\{\varnothing\right\}\)
Giải phương trình: \(\frac{3}{x-3}-\frac{2}{x-1}=\frac{x-1}{2}-\frac{x-3}{3}\).
có ai giúp mk vs
Đặt \(x-3=t\) thì pt đã cho trở thành :
\(\frac{3}{t}-\frac{2}{t+2}=\frac{t+2}{2}-\frac{t}{3}\)
\(\Leftrightarrow\frac{3t+6-2t}{t\left(t+2\right)}=\frac{3t+6-2t}{6}\)
\(\Leftrightarrow\left(t+6\right)\left[\frac{1}{t\left(t+2\right)}-\frac{1}{6}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t+6=0\\\frac{1}{t\left(t+2\right)}=\frac{1}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=-6\\t^2+2t-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=-6\\\left(t+1\right)^2=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\t=\sqrt{7}-1\\t=-\sqrt{7}-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2+\sqrt{7}\\x=2-\sqrt{7}\end{matrix}\right.\) ( TM )
Phương trình đầu bài tương đương với
\(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)\(\Leftrightarrow\frac{x+43+57}{57}+\frac{x+46+54}{54}=\frac{x+49+51}{51}+\frac{x+52+48}{48}\)\(\Leftrightarrow\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
\(\Leftrightarrow\orbr{\begin{cases}x+100=0\\\frac{1}{57}+\frac{1}{54}=\frac{1}{51}+\frac{1}{48}\left(sai\right)\end{cases}\Leftrightarrow x+100=0\Leftrightarrow x=-100}\)
Vậy phương trình có nghiệm duy nhất là x=-100
<=> \(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)
<=> \(\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
<=> \(\left(x+100\right)\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)=0\)
vi \(\frac{1}{57}< \frac{1}{51};\frac{1}{54}< \frac{1}{48}\Rightarrow\frac{1}{57}-\frac{1}{51}+\frac{1}{54}-\frac{1}{48}< 0\)
=> x+100=0 => x= -100
vay pt co nghiem \(x=-100\)
ĐKXĐ: ...
Đặt \(x-\frac{1}{x}=a\Rightarrow a^3=x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)\Rightarrow x^3-\frac{1}{x^3}=a^3+3a\)
Phương trình trở thành:
\(a^3+3a-2a-2=0\Leftrightarrow a^3+a-2=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a+2\right)=0\)
\(\Rightarrow a=1\Rightarrow x-\frac{1}{x}=1\Rightarrow x^2-x-1=0\)
ĐKXĐ: ...
Đặt \(\frac{x}{3}-\frac{4}{x}=a\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}=a^2\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=a^2+\frac{8}{3}\)
\(\Rightarrow\frac{x^2}{3}+\frac{48}{x^2}=3a^2+8\)
\(3a^2+8=10a\Leftrightarrow3a^2-10a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{3}-\frac{4}{x}=2\\\frac{x}{3}-\frac{4}{x}=\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-6x-12=0\\x^2-4x-12=0\end{matrix}\right.\)