Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(4x^2+\frac{1}{x^2}-4\left(2x+\frac{1}{x}\right)+7=0\)
Đặt \(2x+\frac{1}{x}=a\Rightarrow a^2=4x^2+\frac{1}{x^2}+4\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)
\(a^2-4-4a+7=0\)
\(\Leftrightarrow a^2-4a+3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{1}{x}=1\\2x+\frac{1}{x}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x^2-x+1=0\\2x^2-3x+1=0\end{matrix}\right.\)
b) \(\frac{4x}{4x^2-8x+7}+\frac{5x}{4x^2-10x+7}=1\)
Giả sử x = 0 ta có :
\(0+0=1\)( vô lý )
=> \(x\ne0\)
Chia cả tử và mẫu của 2 phân thức cho x ta được :
\(\frac{4x:x}{\left(4x^2-8x+7\right):x}+\frac{5x:x}{\left(4x^2-10x+7\right):x}=1\)
\(\Leftrightarrow\frac{4}{4x-8+\frac{7}{x}}+\frac{5}{4x-10+\frac{7}{x}}=1\)
Đặt \(a=4x+\frac{7}{x}-9\)
\(\Leftrightarrow\frac{4}{a+1}+\frac{5}{a-1}=1\)
\(\Leftrightarrow\frac{4\left(a-1\right)+5\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}=\frac{a^2-1}{a^2-1}\)
\(\Rightarrow9a+1=a^2-1\)
\(\Leftrightarrow a^2-9a-2=0\)
Tự giải tiếp
b) \(\frac{x^4+4}{x^2-2}=5x\)
\(\Leftrightarrow x^4+4=5x\left(x^2-2\right)\)
\(\Leftrightarrow x^4+4-5x^3+10x=0\)
\(\Leftrightarrow x^4-2x^3-3x^3+6x^2-6x^2+12x-2x+4=0\)
\(\Leftrightarrow x^3\left(x-2\right)-3x^2\left(x-2\right)-6x\left(x-2\right)-2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-3x^2-6x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+x^2-4x^2-4x-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+1\right)-4x\left(x+1\right)-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-4x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
\(x^2-4x-2=0\)
\(\Leftrightarrow x^2-4x+4-6=0\)
\(\Leftrightarrow\left(x-2\right)^2=\left(\pm\sqrt{6}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}+2\\x=-\sqrt{6}+2\end{cases}}\)
Vậy....
\(x=0\) không phải nghiệm
\(\frac{4}{x+1+\frac{3}{x}}+\frac{5}{x-5+\frac{3}{x}}=-\frac{3}{2}\)
Đặt \(x-5+\frac{3}{x}=a\)
\(\frac{4}{a+6}+\frac{5}{a}=-\frac{3}{2}\)
\(\Leftrightarrow8a+10\left(a+6\right)=-3a\left(a+6\right)\)
\(\Leftrightarrow3a^2+36a+60=0\Rightarrow\left[{}\begin{matrix}a=-2\\a=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-5+\frac{3}{x}=-2\\x-5+\frac{3}{x}=-10\end{matrix}\right.\) \(\Leftrightarrow...\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{2x}{3x^2-4x+1}-\frac{7x}{3x^2+2x+1}=6\)
\(\Leftrightarrow\frac{2}{3x-4+\frac{1}{x}}-\frac{7}{3x+2+\frac{1}{x}}=6\)
Đặt \(3x-4+\frac{1}{x}=a\)
\(\frac{2}{a}-\frac{7}{a+6}=6\)
\(\Leftrightarrow2\left(a+6\right)-7a=6a\left(a+6\right)\)
\(\Leftrightarrow6a^2+41a-12=0\)
Nghiệm xấu, bạn coi lại đề
ĐK: ...
c) \(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)
\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)
\(\Leftrightarrow5x+25=0\)
\(\Leftrightarrow x=-5\)( ko t/m )
d) tương tự, ngại tính lắm
e) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1}{x^3-1}-\frac{3x^2}{x^3-1}=\frac{2x\left(x-1\right)}{x^3-1}\)
\(\Leftrightarrow4x^2-3x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=\frac{-1}{4}\left(c\right)\end{matrix}\right.\)
a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :
\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)
\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)
Đến đây ta đặt \(x+\frac{60}{x}+16=t\left(1\right)\)
Ta được :
\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)
Từ đó ta lắp vào ( 1 ) tính được x
a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)
\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)
=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0
=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0
=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0
=>(2x^2+120+35x)(2x^2+31x+120)=0
=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)
b: Đặt x^2-3x=a
Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)
\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)
=>(3a+10)(a+5)=6(a^2+7a+12)
=>6a^2+42a+72=3a^2+15a+10a+50
=>3a^2+17a+22=0
=>x=-2 hoặc x=-11/3
a) \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\)\(\frac{21\left(4x+3\right)-15\left(6x-2\right)}{105}=\frac{35\left(5x+4\right)+315}{105}\)
\(\Leftrightarrow21\left(4x+3\right)-15\left(6x-2\right)=35\left(5x+4\right)+315\)
\(\Leftrightarrow84x+63-90x+30=175x+140+315\)
\(\Leftrightarrow84x-90x-175x=140+315-63-30\)
\(\Leftrightarrow-181x=362\)
\(\Leftrightarrow x=-2\)
b)\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x+4\right)^2}{6}=0\)
\(\Leftrightarrow\)\(\frac{8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x+4\right)^2}{24}=0\)
\(\Leftrightarrow8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2+8x+16\right)=0\)
\(\Leftrightarrow8x^2-32x+32-12x^2+27+4x^2+32x+64=0\)
\(\Leftrightarrow8x^2-12x^2+4x^2-32x+32x=-64-27-32\)
\(\Leftrightarrow0x=-123\) (vô nghiệm)
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{4}{x-8+\frac{7}{x}}+\frac{5}{x-10+\frac{7}{x}}=-1\)
Đặt \(x-10+\frac{7}{x}=a\)
\(\frac{4}{a+2}+\frac{5}{a}=-1\)
\(\Leftrightarrow4a+5\left(a+2\right)=-a\left(a+2\right)\)
\(\Leftrightarrow a^2+11a+10=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-10+\frac{7}{x}=-1\\x-10+\frac{7}{x}=-10\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-9x+7=0\\x^2+7=0\end{matrix}\right.\)