Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> (2sinxcosx-cosx)+5sinx-2-cos2x=0
<=> cosx(2sinx-1)+2\(sin^2x\)+5sinx-3=0
<=> cosx(2sinx-1) +(2sinx-1)(sinx+3)
<=> (2sinx-1)(cosx+sinx+3)=0
<=>\(\begin{cases}sinx=\frac{1}{2}\\cosx+sinx+3=0\end{cases}\)
+) sinx=1/2
<=> \(x=\frac{\pi}{2}+k2\pi\) với k thuộc Z
+) cosx+sinx+3= <=>\(\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)=-3
<=> \(sin\left(x+\frac{\pi}{4}\right)\)=\(\frac{-\sqrt{3}}{2}\)
<=>\(sin\left(x+\frac{\pi}{4}\right)=sin\frac{-\pi}{3}\)
<=> \(\left[\begin{array}{nghiempt}x=\frac{-\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{array}\right.\)với k thuộc Z
vậy pht có 3 nghiệm:..
:v bn ns v là bn bik hết là dạng gì rr mà lm ko đc á :))
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=\frac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=arcsin\left(\frac{4}{5}\right)+m2\pi\\x=\pi-arcsin\left(\frac{4}{5}\right)+n2\pi\end{matrix}\right.\)
Do \(-2\pi\le x\le3\pi\)
\(\Rightarrow\left\{{}\begin{matrix}-2\pi\le\frac{\pi}{2}+k\pi\le3\pi\\-2\pi\le arcsin\left(\frac{4}{5}\right)+m2\pi\le3\pi\\-2\pi\le\pi-arcsin\left(\frac{4}{5}\right)+n2\pi\le3\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\frac{5}{2}\le k\le\frac{5}{2}̸\\-1,15< m< 1,35\\-1,35< n< 1,14\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\left\{-2;-1;0;1;2\right\}\\m=\left\{-1;0;1\right\}\\n=\left\{-1;0;1\right\}\end{matrix}\right.\)
Có 11 nghiệm
cosx + \(\dfrac{5}{2}\)sinx = 3
vì 12 + 2,52 < 32 nên pt vô nghiệm
\(cosx+5sin\dfrac{x}{2}-3\)=0
<=> 1-2\(sin^2\dfrac{x}{2}\)+\(5sin\dfrac{x}{2}\)-3=0
<=>2\(sin^2\dfrac{x}{2}-5sin\dfrac{x}{2}\)+2=0
<=>2si\(n^2\dfrac{x}{2}-4sin\dfrac{x}{2}-sin\dfrac{x}{2}+2\)=0
<=>(\(sin\dfrac{x}{2}-2\))(\(2sin\dfrac{x}{2}-1\))=0
\(\left[{}\begin{matrix}sin\dfrac{x}{2}=2\left(lọại\right)\\sin\dfrac{x}{2}=\dfrac{1}{2}\left(nhận\right)\end{matrix}\right.\)
vơi \(sin\dfrac{x}{2}=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=\dfrac{\pi}{6}+k2\pi\\\dfrac{x}{2}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k4\pi\\x=\dfrac{5\pi}{3}+k4\pi\end{matrix}\right.\)