K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

ĐK: \(x>-1\)

\(PT\Leftrightarrow a^2-\left(x+1\right)a+2x-2=0\)

\(\Leftrightarrow\left(2-a\right)\left(x-a-1\right)=0\)

.Làm nốt. 

~Ko chắc~

30 tháng 8 2019

À quên: Đặt \(a=\sqrt{x^2-2x+3}\ge\sqrt{2}\)

ĐK  \(x\ge0\)

Đặt \(x=a,x+1=b\)

\(PT\Leftrightarrow a^4+b^4=\left(a+b\right)^4\)

<=> 4a3b+6a2b2+4ab3=0

<=> ab(2a2+3ab+2b2)=0

=>ab=0 (vì 2a2+3ab+2b2>0)

=>\(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy.............................

20 tháng 11 2015

vào câu hỏi tương tự nhé bạn

Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)

Theo đề, ta có phương trình:

a+1/a=2

\(\Leftrightarrow a+\dfrac{1}{a}=2\)

\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)

=>a=1

=>\(x=\sqrt{4x-1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

21 tháng 9 2020

Đặt \(u=\sqrt{x+1};t=\sqrt{1-x};\text{đ}k:-1\le x\le1\)

Phương trình trở thành:

\(u+2u^2=-t^2+t+3ut\Leftrightarrow\left(u-t\right)^2+u\left(u-t\right)+\left(u-t\right)=0\)

\(\Leftrightarrow\left(u-t\right)\left(2u-t+1\right)=0\Leftrightarrow\orbr{\begin{cases}u=t\\2u+1=t\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-24}{25}\end{cases}}}\)

21 tháng 9 2020

mình dùng cách khác nhé :((

\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\left(đk:-1\le x\le1\right)\)

\(< =>\sqrt{x+1}-1+2x+2-3=x-1+\sqrt{1-x}-1+3\sqrt{1-x^2}-3\)

\(< =>\frac{x}{\sqrt{x+1}+1}+2x-1-x+1=-\frac{x}{\sqrt{1-x}+1}+\frac{9\left(1-x^2-1\right)}{3\sqrt{1-x^2}+3}\)

\(< =>\frac{x}{\sqrt{x+1}+1}+x+\frac{x}{\sqrt{1-x}+1}+\frac{9x^2}{3\sqrt{1-x^2}+3}=0\)

\(< =>x\left(\frac{1}{\sqrt{x+1}+1}+1+\frac{1}{\sqrt{1+x}+1}+\frac{9x}{3\sqrt{1-x^2}+3}\right)=0< =>x=0\)

rồi đến đây dùng đk đánh giá cái ngoặc khác 0 là ok

13 tháng 10 2017

 a)  2 x 2 − 2 x 2 + 3 x 2 − 2 x + 1 = 0 ( 1 )

Đặt  x 2   –   2 x   =   t ,

(1) trở thành :   2 t 2   +   3 t   +   1   =   0   ( 2 ) .

Giải (2) :

Có a = 2 ; b = 3 ; c = 1

⇒ a – b + c = 0

⇒ (2) có nghiệm    t 1   =   - 1 ;   t 2   =   - c / a   =   - 1 / 2 .

+ Với t = -1  ⇒ x 2 − 2 x = − 1 ⇔ x 2 − 2 x + 1 = 0 ⇔ ( x − 1 ) 2 = 0 ⇔ x = 1

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

(1) trở thành:  t 2   –   4 t   +   3   =   0   ( 2 )

Giải (2):

Có a = 1; b = -4; c = 3

⇒ a + b + c = 0

⇒ (2) có nghiệm  t 1   =   1 ;   t 2   =   c / a   =   3 .

+ t = 1 ⇒ x + 1/x = 1  ⇔   x 2   +   1   =   x   ⇔   x 2   –   x   +   1   =   0

Có a = 1; b = -1; c = 1  ⇒   Δ   =   ( - 1 ) 2   –   4 . 1 . 1   =   - 3   <   0

Phương trình vô nghiệm.

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9