Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
ĐKXĐ: \(x>0\)
\(\sqrt{x\left(x+3\right)}+2\sqrt{x+2}=2x+\sqrt{\dfrac{\left(x+2\right)\left(x+3\right)}{x}}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-\sqrt{x+3}\right)+\sqrt{\dfrac{x+2}{x}}\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(\dfrac{4x-x-3}{2\sqrt{x}+\sqrt{x+3}}\right)-\sqrt{\dfrac{x+2}{x}}\left(\dfrac{4x-x-3}{\sqrt{x+3}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-1\right)}{2\sqrt{x}+\sqrt{x+3}}\left(\sqrt{x}-\sqrt{\dfrac{x+2}{x}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{x+2}{x}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)
b.
ĐKXĐ: \(x\ge-\dfrac{1}{2};x\ne1-\sqrt{2}\)
\(x+2+x\sqrt{2x+1}=x\sqrt{x+2}+\sqrt{\left(x+2\right)\left(2x+1\right)}\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{2x+1}-\sqrt{x+2}\right)-x\left(\sqrt{2x+1}-\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{x+2}\right)\left(\sqrt{x+2}-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=\sqrt{x+2}\\\sqrt{x+2}=x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+2\\x^2-x-2=0\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)
b.
\(\left(x^2+1\right)^2=5-x\sqrt{2x^2+4x}\)
\(\Leftrightarrow x^4+2x^2-4+x\sqrt{2x^2+4x}=0\)
Đặt \(x\sqrt{2x^2+4x}=t\Rightarrow t^2=x^2\left(2x^2+4x\right)=2\left(x^4+2x^2\right)\)
Pt trở thành:
\(\dfrac{t^2}{2}-4+t=0\)
\(\Leftrightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4x}=2\left(x>0\right)\\x\sqrt{2x^2+4x}=-4\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-2=0\left(x>0\right)\\x^4+2x^2-8=0\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)
a.
ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow\dfrac{9}{x^2}+2+\dfrac{2x}{\sqrt{2x^2+9}}=3\)
\(\Leftrightarrow\dfrac{2x^2+9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}=3\)
Đặt \(\dfrac{x}{\sqrt{2x^2+9}}=t\Rightarrow\dfrac{2x^2+9}{x^2}=\dfrac{1}{t^2}\)
Pt trở thành:
\(\dfrac{1}{t^2}+2t=3\)
\(\Rightarrow2t^3-3t^2+1=0\)
\(\Leftrightarrow\left(t-1\right)^2\left(2t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{\sqrt{2x^2+9}}=1\left(x>0\right)\\\dfrac{x}{\sqrt{2x^2+9}}=-\dfrac{1}{2}\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2x^2+9\left(vô-nghiệm\right)\\4x^2=2x^2+9\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-\dfrac{3\sqrt{2}}{2}\)
Kiểm tra lại vế trái đề bài câu b
c.
\(\Leftrightarrow x^2+3-\left(3x+1\right)\sqrt{x^2+3}+2x^2+2x=0\)
Đặt \(\sqrt{x^2+3}=t>0\)
\(\Rightarrow t^2-\left(3x+1\right)t+2x^2+2x=0\)
\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=\left(x-1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1-x+1}{2}=x+1\\t=\dfrac{3x+1+x-1}{2}=2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=x^2+2x+1\left(x\ge-1\right)\\x^2+3=4x^2\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
a.
Đề bài ko chính xác, pt này ko giải được
b.
ĐKXĐ: \(x\ge-\dfrac{7}{2}\)
\(2x+7-\left(2x+7\right)\sqrt{2x+7}+x^2+7x=0\)
Đặt \(\sqrt{2x+7}=t\ge0\)
\(\Rightarrow t^2-\left(2x+7\right)t+x^2+7x=0\)
\(\Delta=\left(2x+7\right)^2-4\left(x^2+7x\right)=49\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+7-7}{2}=x\\t=\dfrac{2x+7+7}{2}=x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+7}=x\left(x\ge0\right)\\\sqrt{2x+7}=x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-7=0\left(x\ge0\right)\\x^2+12x+42=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=1+2\sqrt{2}\)
a. ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\-1\le x< 0\end{matrix}\right.\)
Do \(x\ne0\) nên pt tương đương:
\(x+2\sqrt{x-\dfrac{1}{x}}=3+\dfrac{1}{x}\)
\(\Leftrightarrow x-\dfrac{1}{x}+2\sqrt{x-\dfrac{1}{x}}-3=0\)
Đặt \(\sqrt{x-\dfrac{1}{x}}=t\ge0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x-\dfrac{1}{x}=1\)
\(\Rightarrow x^2-x-1=0\Rightarrow x=\dfrac{1\pm\sqrt{5}}{2}\)
b.
ĐKXĐ: \(x\ge0\)
\(x+\sqrt{x}-\sqrt{x+3}=0\)
\(\Leftrightarrow x-1+\sqrt{x}-1-\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow x-1+\dfrac{x-1}{\sqrt{x}+1}-\dfrac{x-1}{\sqrt{x+3}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x+3}+2}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{\sqrt{x+3}+1}{\sqrt{x+3}+2}\right)=0\)
\(\Leftrightarrow x-1=0\)
c.
ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)
\(\Leftrightarrow x+4-2\sqrt[]{\left(\dfrac{x+2}{x-1}\right)^2\left(\dfrac{x-1}{x+2}\right)}=0\)
\(\Leftrightarrow x+4-2\sqrt[]{\dfrac{x+2}{x-1}}=0\)
\(\Leftrightarrow x+4=2\sqrt[]{\dfrac{x+2}{x-1}}\) (\(x\ge-4\))
\(\Leftrightarrow x^2+8x+16=\dfrac{4\left(x+2\right)}{x-1}\)
\(\Rightarrow x^3+7x^2+4x-24=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+4x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2+2\sqrt{3}\\x=-2-2\sqrt{3}\left(loại\right)\end{matrix}\right.\)
a.
\(\Leftrightarrow2x^2-11x+21=3\sqrt[3]{4\left(x-1\right)}\)
Do \(2x^2-11x+21=2\left(x-\dfrac{11}{4}\right)^2+\dfrac{47}{8}>0\Rightarrow3\sqrt[3]{4\left(x-1\right)}>0\Rightarrow x-1>0\)
Ta có:
\(VT=2x^2-11x+21-3\sqrt[3]{4x-4}=2\left(x^2-6x+9\right)+x+3-3\sqrt[3]{4\left(x-1\right)}\)
\(=2\left(x-3\right)^2+x+3-3\sqrt[3]{4\left(x-1\right)}\)
\(\Rightarrow VT\ge x+3-3\sqrt[3]{4\left(x-1\right)}=\left(x-1\right)+2+2-3\sqrt[3]{4\left(x-1\right)}\)
\(\Rightarrow VT\ge3\sqrt[3]{\left(x-1\right).2.2}-3\sqrt[3]{4\left(x-1\right)}=0\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\x-1=2\\\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\)
a.
\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3-\left(3x-5\right)\)
Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt[3]{3x-5}=2x-3\)
\(\Leftrightarrow3x-5=\left(2x-3\right)^3\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
b.
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+3x-2-\sqrt[3]{81x-8}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{\left(3x-2\right)^3-\left(81x-8\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{27\left(x^3-2x^2-\dfrac{5}{3}x\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow\left(x^3-2x^2-\dfrac{5}{3}x\right)\left(1+\dfrac{27}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}\right)=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x=0\)
a.
ĐKXĐ: \(x\ge0\)
\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-12x+5=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)
\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)
\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)
\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)
\(\Leftrightarrow3x^2-4=0\)
\(\Leftrightarrow...\)