K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2019

ĐKXĐ: ...

\(\Leftrightarrow x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\) \(\Rightarrow x=3\)

4 tháng 11 2019

cam on ban

AH
Akai Haruma
Giáo viên
6 tháng 10 2021

Lời giải:
ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow (x^2-6x+9)+[(x+1)-4\sqrt{x+1}+4]=0$

$\Leftrightarrow (x-3)^2+(\sqrt{x+1}-2)^2=0$

Vì $(x-3)^2; (\sqrt{x+1}-2)^2\geq 0$ với mọi $x\geq -1$
Do đó để tổng của chúng $=0$ thì:

$(x-3)^2=(\sqrt{x+1}-2)^2=0$
$\Leftrightarrow x=3$ (tm)

NV
6 tháng 10 2021

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(x+1-4\sqrt{x+1}+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\) \(\Leftrightarrow x=3\)

26 tháng 9 2021

\(a,PT\Leftrightarrow x\sqrt{3}=x+2\\ \Leftrightarrow3x^2=x^2+4x+4\\ \Leftrightarrow2x^2-4x-4=0\Leftrightarrow x^2-2x-2=0\\ \Delta=4+8=12\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2-2\sqrt{3}}{2}=1-\sqrt{3}\\x=\dfrac{2+2\sqrt{3}}{2}=1+\sqrt{3}\end{matrix}\right.\)

\(b,ĐK:x\ge\dfrac{2}{3}\\ PT\Leftrightarrow3x-2=7-4\sqrt{3}\\ \Leftrightarrow3x=9-4\sqrt{3}\\ \Leftrightarrow x=\dfrac{9-4\sqrt{3}}{3}\left(tm\right)\)

\(c,ĐK:x\ge-1\\ PT\Leftrightarrow\left(x+1-4\sqrt{x+1}+4\right)+\left(x^2-6x+9\right)=0\\ \Leftrightarrow\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+1}=2\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x=3\end{matrix}\right.\Leftrightarrow x=3\left(tm\right)\)

23 tháng 6 2021

a) Áp dụng bđt AM-GM có:

\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)

\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)

Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)

Vậy...

b)Đk:\(x\ge2\)

Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)

Do \(x\ge2\Rightarrow x-1>0\)

Chia cả hai vế của pt cho x-1 ta được:

\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy S={2}

c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)

Thay x=3 vào pt thấy thỏa mãn

Vậy S={3}

23 tháng 6 2021

a) Quên mất, ko áp dụng đc AM-GM, xin lỗi

Pt \(\Leftrightarrow\sqrt[3]{9-x}-2=2-\sqrt[3]{7+x}\)

\(\Leftrightarrow\dfrac{9-x-8}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{8-\left(7-x\right)}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\)

\(\Leftrightarrow\dfrac{1-x}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{1-x}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{1}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4=4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}\left(1\right)\end{matrix}\right.\)

Từ (1) \(\Leftrightarrow\sqrt[3]{\left(9-x\right)^2}-\sqrt[3]{\left(7+x\right)^2}+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)

\(\Leftrightarrow\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)\left(\sqrt[3]{9-x}+\sqrt[3]{7+x}\right)+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)

\(\Leftrightarrow\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right).4+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)

\(\Leftrightarrow\sqrt[3]{9-x}-\sqrt[3]{7+x}=0\)

\(\Leftrightarrow\sqrt[3]{9-x}=\sqrt[3]{7+x}\)\(\Leftrightarrow9-x=7+x\)

\(\Leftrightarrow x=1\)

Vậy S={1}

Ta có x2−5x+14≐(x−3)2+x+5≥x+5≥x+1+4≥4√x+1x2−5x+14≐(x−3)2+x+5≥x+5≥x+1+4≥4x+1
⇒VT≥VP⇒VT≥VP
Để VT=VP thì x=3.(dấu "=" xảy ra) 

12 tháng 9 2018

ĐK: x + 1 ≥ 0 <=> x ≥ - 1

<=> 16( x + 1) = x4 + 25x+ 196 - 10x+ 28x- 140x

<=> 16x + 16 = x4 - 10x+ 53x- 140x +196

<=> x4 - 10x3 + 53x2 - 156x + 180 = 0

<=> ( x - 3)2(x2 - 4x + 20 ) = 0

<=> x = 3

3 tháng 3 2018

Đk : x >= 2/5

pt <=> \(2\sqrt{\left(5x-2\right).\left(x^2+x+1\right)}\)= x^2 + 6x - 1

Đặt \(\sqrt{5x-2}=a\)và  \(\sqrt{x^2+x+1}=b\)

=> x^2+6x-1 = a^2+b^2

pt trở thành : 

2ab = a^2+b^2

<=> a^2-2ab+b^2 = 0

<=> (a-b)^2 = 0

<=> a=b

<=> 5x-2 = x^2+x+1

<=> x^2+x+1 - 5x+2 = 0

<=> x^2-4x+3 = 0

<=> (x-1).(x-3) = 0

<=> x-1=0 hoặc x-3=0 

<=> x=1 ( t/m ) hoặc x=3 ( t/m )

Vậy ........

Tk mk nha

AH
Akai Haruma
Giáo viên
11 tháng 12 2018

Câu a:

ĐKXĐ: \(x\geq 1\)

\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

\(\Leftrightarrow \sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)

\(\Rightarrow x-1=8x-3+2\sqrt{(3x-2)(5x-1)}\) (bình phương 2 vế)

\(\Leftrightarrow 7x-2+2\sqrt{(3x-2)(5x-1)}=0\)

(Vô lý với mọi \(x\geq 1\) )

Do đó PT vô nghiệm.

AH
Akai Haruma
Giáo viên
11 tháng 12 2018

Câu b)

PT \(\Leftrightarrow \sqrt{3(x^2+2x+1)+4}+\sqrt{5(x^2+2x+1)+9}=5-(x^2+2x+1)\)

\(\Leftrightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}=5-(x+1)^2\)

\((x+1)^2\geq 0, \forall x\) nên:

\(\sqrt{3(x+1)^2+4}\geq \sqrt{4}=2\)

\(\sqrt{5(x+1)^2+9}\geq \sqrt{9}=3\)

\(\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5(1)\)

Mặt khác ta cũng có: \(5-(x+1)^2\leq 5-0=5(2)\)

Từ \((1);(2)\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5\geq 5-(x+1)^2\)

Dấu "=" xảy ra khi $(x+1)^2=0$ hay $x=-1$ (thỏa mãn)

Vậy pt có nghiệm $x=-1$