K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 7 2021

\(\Leftrightarrow3^{x^2}.4^{x+1}=3^{-x}\)

Lấy logarit cơ số 3 hai vế:

\(\Rightarrow log_3\left(3^{x^2}.4^{x+1}\right)=log_3\left(3^{-x}\right)\)

\(\Leftrightarrow x^2+\left(x+1\right)log_34=-x\)

\(\Leftrightarrow x^2+x+\left(x+1\right)log_34=0\)

\(\Leftrightarrow x\left(x+1\right)+\left(x+1\right)log_34=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+log_34\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-log_34=-2log_32\end{matrix}\right.\)

18 tháng 5 2021

\(3x^4+x^2-4=0\)

\(\Leftrightarrow3x^4-3x^2+4x^2-4=0\)

\(\Leftrightarrow3x^2\cdot\left(x^2-1\right)+4\cdot\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(3x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\3x^2+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\x^2=-\dfrac{4}{3}\left(l\right)\end{matrix}\right.\)

\(S=\left\{\pm1\right\}\)

18 tháng 5 2021

Đặt `x^2=t(t>=0)`

Ta có PT: `3t^2+t-4=0`

`3+1-4=0`

`=> t_1 = 1 ; t_2 = -4/3 (L)`

`=> x^2=1`

`<=> x=\pm 1`

Vậy `S={\pm 1}`.

29 tháng 5 2017

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán